4.7 Article

Diffusive gradients in thin films for predicting methylmercury bioavailability in freshwaters after photodegradation

Journal

CHEMOSPHERE
Volume 131, Issue -, Pages 184-191

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2015.02.060

Keywords

Methylmercury; Photodegradation; DGT; Bioavailable; Polyacrylamide

Funding

  1. Spanish Ministry of Economy and Competitiveness, MINECO [CTQ2011-25614]
  2. Spanish National Council of Research (CSIC)
  3. European Social Fund (ESF)

Ask authors/readers for more resources

Determination of the dissolved-bioavailable fraction of methylmercury (MeHg) and its degradation pathways in freshwaters deserve attention, to further our understanding of the potential risk and toxicity of MeHg. Since the photodegradation of MeHg is the most important known abiotic process able to demethylate MeHg, this study investigated the role of sunlight on MeHg bioavailability in freshwater environments. Experiments to calculate photodegradation rate constants of MeHg in different types of freshwater in combination with experiments to distinguish the labile fraction of MeHg after being exposed to sunlight were performed. The ability of diffusive gradients in thin films based on polyacrylamide (P-DGT) to assess DGT-labile MeHg during photodegradation was successfully tested. First order photodegradation rate constants (k(pd)) of bioavailable MeHg determined in five different types of waters with different amount of dissolved organic matter (DOM), were in the range 0.073-0.254 h(-1), confirming previous findings that once there is DOM in solution, which would favour the photodegradation process, the kpd is mainly affected by light attenuation. Simulated sunlight seems not to alter the lability of MeHg, although photodegradation processes may decrease the concentrations of MeHg, contributing to reduce the amount of bioavailable MeHg (i.e. MeHg uptake by DGT). However, the quality of DOM, rather than the quantity, plays an important role in the bioavailability of MeHg in freshwater. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available