4.4 Article

Development and biodistribution of a theranostic aluminum phthalocyanine nanophotosensitizer

Journal

PHOTODIAGNOSIS AND PHOTODYNAMIC THERAPY
Volume 13, Issue -, Pages 48-57

Publisher

ELSEVIER
DOI: 10.1016/j.pdpdt.2015.12.005

Keywords

Aluminum phthalocyanine; Copolymer; Nanoparticles; Nanophotosensitizer; Biodistribution; Imaging

Categories

Funding

  1. Swedish Childhood Cancer Foundation
  2. Swedish Cancer Society

Ask authors/readers for more resources

Background: Aluminum phthalocyanine (AlPc) is an efficient second generation photosensitizer (PS) with high fluorescence ability. Its use in photodynamic therapy (PDT) is hampered by hydrophobicity and poor biodistribution. Methods: AlPc was converted to a biocompatible nanostructure by incorporation into amphiphilic polyethylene glycol-polycaprolactone (PECL) copolymer nanoparticles, allowing efficient entrapment of the PS in the hydrophobic core, water dispersibility and biodistribution enhancement by PEG-induced surface characteristics. A series of synthesized PECL copolymers were used to prepare nanophotosensitizers with an average diameter of 66.5-99.1 nm and encapsulation efficiency (EE%) of 66.4-78.0%. One formulation with favorable colloidal properties and relatively slow release over 7 days was selected for in vitro photophysical assessment and in vivo biodistribution studies in mice. Results: The photophysical properties of AlPc were improved by encapsulating AlPc into PECL-NPs, which showed intense fluorescence emission at 687 nm and no AlPc aggregation has been induced after entrapment into the nanoparticles. Biodistribution of AlPc loaded NPs (AlPc-NPs) and free AlPc drug in mice was monitored by in vivo whole body fluorescence imaging and ex vivo organ imaging, with in vivo imaging system (IVIS). Compared to a AlPc solution in aqueous TWEEN 80 (2 w/v%), the developed nanophotosensitizer showed targeted drug delivery to lungs, liver and spleen as monitored by the intrinsic fluorescence of AlPc at different time points (1 h, 24 h and 48 h) post iv. administration. Conclusions: The AlPc-based copolymer nanoparticles developed offer potential as a single agent multifunctional theranostic nanophotosensitizer for PDT coupled with imaging-guided drug delivery and biodistribution, and possibly also fluorescence diagnostics. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available