4.6 Article

Low-level temperature inversions and their effect on aerosol condensation nuclei concentrations under different large-scale synoptic circulations

Journal

ADVANCES IN ATMOSPHERIC SCIENCES
Volume 32, Issue 7, Pages 898-908

Publisher

SCIENCE PRESS
DOI: 10.1007/s00376-014-4150-z

Keywords

temperature inversion; aerosol; condensation nuclei; large-scale synoptic pattern; statistical characteristics

Funding

  1. U.S. Department of Energy (DOE)
  2. Ministry of Science and Technology of China [2010CB950804, 2013CB955801]
  3. Chinese Academy of Sciences [XDA05100300]
  4. National Natural Science Foundation of China [41305011]

Ask authors/readers for more resources

Knowledge of the statistical characteristics of inversions and their effects on aerosols under different large-scale synoptic circulations is important for studying and modeling the diffusion of pollutants in the boundary layer. Based on results generated using the self-organizing map (SOM) weather classification method, this study compares the statistical characteristics of surface-based inversions (SBIs) and elevated inversions (EIs), and quantitatively evaluates the effect of SBIs on aerosol condensation nuclei (CN) concentrations and the relationship between temperature gradients and aerosols for six prevailing synoptic patterns over the the Southern Great Plains (SGP) site during 2001-10. Large-scale synoptic patterns strongly influence the statistical characteristics of inversions and the accumulation of aerosols in the low-level atmosphere. The activity, frequency, intensity, and vertical distribution of inversions are significantly different among these synoptic patterns. The vertical distribution of inversions varies diurnally and is significantly different among the different synoptic patterns. Anticyclonic patterns affect the accumulation of aerosols near the ground more strongly than cyclonic patterns. Mean aerosol CN concentrations increase during SBIs compared to no inversion cases by 16.1%, 22.6%, 24.5%, 58.7%, 29.8% and 23.7% for the six synoptic patterns. This study confirms that there is a positive correlation between temperature gradients and aerosol CN concentrations near the ground at night under similar large-scale synoptic patterns. The relationship is different for different synoptic patterns and can be described by linear functions. These findings suggest that large-scale synoptic patterns change the static stability of the atmosphere and inversions in the lower atmosphere, thereby influencing the diffusion of aerosols near the ground.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available