4.7 Article

Object recognition using local invariant features for robotic applications: A survey

Journal

PATTERN RECOGNITION
Volume 60, Issue -, Pages 499-514

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.patcog.2016.05.021

Keywords

Local invariant features; Object recognition; Local descriptors; Local interest points

Funding

  1. FONDECYT [1130153]

Ask authors/readers for more resources

The main goal of this survey is to present a complete analysis of object recognition methods based on local invariant features from a robotics perspective; a summary which can be used by developers of robot vision applications in the selection and development of object recognition systems. The survey includes a brief description of the main approaches reported in the literature, with more specific analyses of local interest point computation methods, local descriptor computation and matching methods, and geometric verification methods. Different methods are analyzed by considering the main requirements of robotics applications, such as real-time operation with limited on-board computational resources, and constrained observational conditions derived from the robot geometry (e.g. limited camera resolution). In addition, various object recognition systems are evaluated in a service-robot domestic environment, where the final task to be performed by a service robot is the manipulation of objects. It can be concluded from the results reported that (i) the most suitable keypoint detectors are ORB, BRISK, Fast Hessian, and DoG, (ii) the most suitable descriptors are ORB, BRISK, SIFE, and SURF, (iii) the final performance of object recognition systems using local invariant features under real-world conditions depends strongly on the geometric verification methods being used, and (iv) the best performing object recognition systems are built using ORB-ORB and DoG-SIFT keypoint-descriptor combinations. ORB-ORB based systems are faster, while DoG-SIFT are more robust to real-world conditions. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available