4.3 Article

Hybrid sonochemic urea-nitrate combustion preparation of CuO/ZnO/Al2O3 nanocatalyst used in fuel cell-grade hydrogen production from methanol: Effect of sonication and fuel/nitrate ratio

Journal

PARTICULATE SCIENCE AND TECHNOLOGY
Volume 36, Issue 2, Pages 217-225

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/02726351.2016.1241846

Keywords

CuO/ZnO/Al2O3; hydrogen; methanol steam reforming; ultrasound; urea-nitrates combustion

Funding

  1. Sahand University of Technology
  2. Iran Nanotechnology Initiative Council

Ask authors/readers for more resources

Fuel cell-grade hydrogen production has been studied via steam reforming of methanol (SRM) over a series of CuO/ZnO/Al2O3 nanocatalysts fabricated by the combustion method. The effect of sonication and urea/nitrate ratio on the characteristics and catalytic properties of the prepared catalysts has been investigated. The synthesized catalysts were characterized by x-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Particle Size Distribution (PSD), energy dispersive x-ray (EDX), Brunauer-Emmett-Teller (BET) and FTIR analyses XRD patterns showed positive influence of urea/nitrate ratio on CuO and ZnO crystallite sizes. The ultrasonic mixing of primary gel compared with conventional mixing led to lower crystallite size. FESEM images showed that the sample mixed by sonication with a urea/nitrate ratio of 1 had more homogeneous morphology with narrow particle size distribution. EDX results proved the presence of all metals on the surface of the nanocatalysts and better consistence between the gel and surface composition of elements in samples prepared by sonication. Catalytic performance showed that sonication during the mixing of primary gel dramatically increased the methanol conversion. It was also proved that increasing the amount of urea led to lower catalytic activity. The ultrasound- treated nanocatalyst with urea/nitrate =1 was the best sample in terms of activity and selectivity. It was stable in the SRM for 1200 min without considerable change in methanol conversion and product selectivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available