4.3 Article

Immunological evaluation of a DNA cocktail vaccine with co-delivery of calcium phosphate nanoparticles (CaPNs) against the Toxoplasma gondii RH strain in BALB/c mice

Journal

PARASITOLOGY RESEARCH
Volume 116, Issue 2, Pages 609-616

Publisher

SPRINGER
DOI: 10.1007/s00436-016-5325-6

Keywords

Toxoplasma gondii; Rhomboid 4; Dense granule 14; Immune response; DNA vaccine; Adjuvant

Categories

Funding

  1. Toxoplasmosis Research Center (TRC), Mazandaran University of Medical Sciences, Sari, Iran [2090]

Ask authors/readers for more resources

Many recent studies have been conducted to evaluate protective immunity mediated by DNA vaccines against toxoplasmosis. Cocktail DNA vaccines showed better immune responses compared to single vaccines. The objective of the current study was to evaluate the protective efficacy of rhomboid 4 (ROM4) and cocktail DNA vaccines (ROM4 + GRA14) of the Toxoplasma gondii RH strain with or without coated calcium phosphate nanoparticles (CaPNs) as the adjuvant to improve the immunogenicity against the T. gondii RH strain in BALB/c mice. Cocktail DNA vaccines of pcROM4 + pcGRA14 of the T. gondii RH strain were constructed. CaPNs were synthesized and the cocktail DNA vaccine was coated with the adjuvant of CaPNs. Immunogenicity and the protective effects of cocktail DNA vaccines with or without CaPNs against lethal challenge were evaluated in BALB/c mice. pcROM4 and cocktail DNA vaccine coated with CaPNs significantly enhanced cellular and humoral immune responses against Toxoplasma compared to pcROM4 and cocktail DNA vaccine without CaPNs (p < 0.05). These findings indicate that the survival time of immunized mice after challenge with the RH strain of T. gondii was increased compared to that of controls and the DNA vaccine provided significant protection in mice (p < 0.05). The CaPN-based cocktail DNA vaccine of pcROM4 + pcGRA14 showed the longest survival time compared to the other groups. Co-immunization with CaPN-based cocktail DNA vaccine (pcROM4 + pcGRA14) boosted immune responses and increased the protective efficacy against acute toxoplasmosis in BALB/c mice compared to both single gene and bivalent DNA vaccine without nano-adjuvants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available