4.6 Article

High-Q, ultrathin-walled microbubble resonator for aerostatic pressure sensing

Journal

OPTICS EXPRESS
Volume 24, Issue 1, Pages 294-299

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.24.000294

Keywords

-

Categories

Funding

  1. Okinawa Institute of Science and Technology Graduate University

Ask authors/readers for more resources

Sensors based on whispering gallery resonators have minute footprints and can push achievable sensitivities and resolutions to their limits. Here, we use a microbubble resonator, with a wall thickness of 500 nm and an intrinsic Q-factor of 10(7) in the telecommunications C-band, to investigate aerostatic pressure sensing via stress and strain of the material. The microbubble is made using two counter-propagating CO2 laser beams focused onto a microcapillary. The measured sensitivity is 19 GHz/bar at 1.55 mu m. We show that this can be further improved to 38 GHz/bar when tested at the 780 nm wavelength range. In this case, the resolution for pressure sensing can reach 0.17 mbar with a Q-factor higher than 5x10(7). (C) 2016 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available