4.4 Article

The front-end electronics and slow control of large area SiPM for the SST-1M camera developed for the CTA experiment

Publisher

ELSEVIER
DOI: 10.1016/j.nima.2016.05.086

Keywords

CTA; SiPM; G-APD; Preamplifier; Front-end; Slow-control; Compensation

Funding

  1. FNSNF
  2. University of Geneva
  3. NCN [DEC-2011/01/M/ST9/01891380]
  4. MNiSW in Poland [498/1/FNiTP/FNiTP/2010]
  5. Swiss National Foundation

Ask authors/readers for more resources

The single mirror Small Size Telescope (SST-1M) is one of the proposed designs for the smallest type of telescopes, SSTs that will compose the Cherenkov Telescope Array (CTA). The SST-1M camera will use Silicon PhotoMultipliers (SiPM) which are nowadays commonly used in High Energy Physics experiments and many imaging applications. However the unique pixel shape and size have required a dedicated development by the University of Geneva and Hamamatsu. The resulting sensor has a surface of 94 me and a total capacitance of similar to 3.4 nF. These unique characteristics, combined with the stringent requirements of the CTA project on timing and charge resolution have led the University of Geneva to develop custom front-end electronics. The preamplifier stage has been tailored in order to optimize the signal shape using measurement campaigns and electronic simulation of the sensor. A dedicated trans-impedance pre-amplifier topology is used resulting in a power consumption of 400 mW per pixel and a pulse width <30 ns. The measurements that have led to the choice of the different components and the resulting performance are detailed in this paper. The slow control electronics was designed to provide the bias voltage with 6.7 mV precision and to correct for temperature variation with a forward feedback compensation with 0.17 degrees C resolution. It is fully configurable and can be monitored using CANbus interface. The architecture and the characterization of the various elements are presented. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available