3.8 Article

Application of an Integrated 3D-2D Modeling Approach for Pillar Support Design in a Western US Underground Coal Mine

Journal

GEOSCIENCES
Volume 13, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/geosciences13110333

Keywords

bonded block model; continuum model; rib reinforcement; rib damage

Ask authors/readers for more resources

This study applied an integrated 3D continuum-2D discontinuum approach to simulate the deformation behavior of unsupported ground and tested the influence of support on the deformation.
Discontinuum Bonded Block Modeling (BBM) represents a potential tool for support design, as these models can reproduce both the rock fracturing process and the influence of reinforcement on unsupported ground. Despite their strengths, discontinuum models are seldom used for mining design due to their computationally intensive nature. This study is an application of an integrated 3D continuum-2D discontinuum approach, in which the mine-wide stress distribution process is modeled using a continuum software, and the local deformation behavior in response to a strain path from the continuum model is simulated with a 2D discontinuum software. In June 2017, two multi-point borehole extensometers were installed in a longwall chain pillar to record ground displacements as a function of the longwall face position. The data from one of the extensometers were employed to calibrate a panel-scale FLAC3D model. The boundary conditions along the pillar slice containing the extensometer were extracted from the FLAC3D model and applied to a 2D BBM, and the input parameters were modified to match the extensometer data. The calibrated BBM was able to reproduce the unsupported rib deformation and depth of the fracturing well. Subsequently, a few support schemes were tested to demonstrate how the incorporation of support might affect rib deformation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available