4.2 Article

Orexin-A facilitates emergence of the rat from isoflurane anesthesia via mediation of the basal forebrain

Journal

NEUROPEPTIDES
Volume 58, Issue -, Pages 7-14

Publisher

CHURCHILL LIVINGSTONE
DOI: 10.1016/j.npep.2016.02.003

Keywords

Orexins; Basal forebrain; Isoflurane anesthesia; Emergence time

Funding

  1. National Natural Science Foundation of China [81371510]

Ask authors/readers for more resources

Previous studies have demonstrated that orexinergic neurons involve in promoting emergence from anesthesia of propofol, an intravenous anesthetics, while whether both of orexin-A and orexin-B have promotive action on emergence via mediation of basal forebrain (BF) in isoflurane anesthesia has not been elucidated. In this study, we observed c-Fos expressions in orexinergic neurons following isoflurane inhalation (for 0, 30, 60, and 120 min) and at the time when the righting reflex returned after the cessation of anesthesia. The plasma concentrations of orexin-A and -B in anesthesia-arousal process were measured by radioimmunoassay. Orexin-A and -B (30 or 100 pmol) or the orexin receptor-1 and -2 antagonist SB-334867A and TCS-OX2-29 (5 or 20 mu g) were microinjected into the basal forebrain respectively. The effects of them on the induction (loss of the righting reflex) and the emergence time (return of the righting reflex) under isoflurane anesthesia were observed. The results showed that the numbers of c-Fos-immunoreactive orexinergic neurons in the hypothalamus decreased over time with continued isoflurane inhalation, but restored at emergence. Similar alterations were observed in changes of plasma orexin-A concentrations but not in orexin-B during emergence. Administration of orexins had no effect on the induction time, but orexin-A facilitated the emergence of rats from isoflurane anesthesia while orexin-B didn't. Conversely, microinjection of the orexin receptor-1 antagonist SB-334867A delayed emergence from isoflurane anesthesia. The results indicate that orexin-A plays a promotive role in the emergence of isoflurane anesthesia and this effect is mediated by the basal forebrain. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available