4.6 Article

FGFR-TACC gene fusions in human glioma

Journal

NEURO-ONCOLOGY
Volume 19, Issue 4, Pages 475-483

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/neuonc/now240

Keywords

chromosomal translocations; FGFR-TACC; glioma; personalized therapy

Funding

  1. National Institutes of Health [R01CA101644, R01CA185486, U54CA193313, R01CA178546, R01CA190891]
  2. Chemotherapy Foundation

Ask authors/readers for more resources

Chromosomal translocations joining in-frame members of the fibroblast growth factor receptor-transforming acidic coiled-coil gene families (the FGFR-TACC gene fusions) were first discovered in human glioblastoma multiforme (GBM) and later in many other cancer types. Here, we review this rapidly expanding field of research and discuss the unique biological and clinical features conferred to isocitrate dehydrogenase wild-type glioma cells by FGFR-TACC fusions. FGFR-TACC fusions generate powerful oncogenes that combine growth-promoting effects with aneuploidy through the activation of as yet unclear intracellular signaling mechanisms. FGFR-TACC fusions appear to be clonal tumor-initiating events that confer strong sensitivity to FGFR tyrosine kinase inhibitors. Screening assays have recently been reported for the accurate identification of FGFR-TACC fusion variants in human cancer, and early clinical data have shown promising effects in cancer patients harboring FGFR-TACC fusions and treated with FGFR inhibitors. Thus, FGFR-TACC gene fusions provide a low-hanging fruit model for the validation of precision medicine paradigms in human GBM.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available