4.4 Article

The Burden of Wildfire Smoke on Respiratory Health in California at the Zip Code Level: Uncovering the Disproportionate Impacts of Differential Fine Particle Composition

Journal

GEOHEALTH
Volume 7, Issue 10, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2023GH000884

Keywords

-

Ask authors/readers for more resources

This study assessed the impact of PM2.5 on respiratory disease hospitalizations in California by considering differential concentration-response functions for PM2.5 from wildfires and other sources. The study found that not accounting for the higher health burden of wildfire-related PM2.5 may underestimate the number of hospitalizations attributable to PM2.5.
Wildfires constitute a growing source of extremely high levels of particulate matter that is less than 2.5 microns in diameter (PM2.5). Recently, toxicologic and epidemiologic studies have shown that PM2.5 generated from wildfires may have a greater health burden than PM2.5 generated from other pollutant sources. This study examined the impact of PM2.5 on hospitalizations for respiratory diseases in California between 2006 and 2019 using a health impact assessment approach that considers differential concentration-response functions (CRF) for PM2.5 from wildfire and non-wildfire sources of emissions. We quantified the burden of respiratory hospitalizations related to PM2.5 exposure at the zip code level through two different approaches: (a) naive (considering the same CRF for all PM2.5 emissions) and (b) nuanced (considering different CRFs for PM2.5 from wildfires and from other sources). We conducted a Geographically Weighted Regression to analyze spatially varying relationships between the delta (i.e., the difference between the naive and nuanced approaches) and the Centers for Disease Control and Prevention's Social Vulnerability Index (SVI). A higher attributable number of respiratory hospitalizations was found when accounting for the larger health burden of wildfire PM2.5. We found that, between 2006 and 2019, the number of hospitalizations attributable to PM2.5 may have been underestimated by approximately 13% as a result of not accounting for the higher CRF of wildfire-related PM2.5 throughout California. This underestimation was higher in northern California and areas with higher SVI rankings. The relationship between delta and SVI varied spatially across California. These findings can be useful for updating future air pollution guideline recommendations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available