4.4 Article

Potential Impacts of Energy and Vehicle Transformation Through 2050 on Oxidative Stress-Inducing PM2.5 Metals Concentration in Japan

Journal

GEOHEALTH
Volume 7, Issue 10, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2023GH000789

Keywords

transition metals; oxidative stress; non-exhaust PM; renewable energy; electric vehicle; air quality

Ask authors/readers for more resources

The study evaluates the impacts of renewable energy shifting, passenger car electrification, and lightweighting on the atmospheric concentrations of PM2.5 total mass and oxidative stress-inducing metals in Japan. The findings show that these measures can effectively reduce pollution levels and the concentration of water-soluble metals, thereby decreasing respiratory oxidative stress.
The impacts of renewable energy shifting, passenger car electrification, and lightweighting through 2050 on the atmospheric concentrations of PM2.5 total mass and oxidative stress-inducing metals (PM2.5-Fe, Cu, and Zn) in Japan were evaluated using a regional meteorology-chemistry model. The surface concentrations of PM2.5 total mass, Fe, Cu, and Zn in the urban area decreased by 8%, 13%, 18%, and 5%, respectively. Battery electric vehicles (BEVs) have been considered to have no advantage in terms of non-exhaust PM emissions by previous studies. This is because the disadvantages (heavier weight increases tire wear, road wear, and resuspention) offset the advantages (regenerative braking system (RBS) reduces brake wear). However, the future lightweighting of drive battery and body frame were estimated to reduce all non-exhaust PM. Passenger car electrification only reduced PM2.5 concentration by 2%. However, Fe and Cu concentrations were more reduced (-8% and -13%, respectively) because they have high brake wear-derived and significantly reflects the benefits of BEV's RBS. The water-soluble fraction concentration of metals (induces oxidative stress in the body) was estimated based on aerosol acidity. The reduction of SOx, NOx, and NH3 emissions from on-road and thermal power plants slightly changed the aerosol acidity (pH +/- 0.2). However, it had a negligible effect on water-soluble metal concentrations (maximum +2% for Fe and +0.5% for Cu and Zn). Therefore, the metal emissions reduction was more important than gaseous pollutants in decreasing the water-soluble metals that induces respiratory oxidative stress and passenger car electrification and lightweighting were effective means of achieving this.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available