4.4 Article

Identifying Obstructive Hypertrophic Cardiomyopathy from Nonobstructive Hypertrophic Cardiomyopathy: Development and Validation of a Model Based on Electrocardiogram Features

Journal

GLOBAL HEART
Volume 18, Issue 1, Pages -

Publisher

UBIQUITY PRESS LTD
DOI: 10.5334/gh.1250

Keywords

hypertrophic cardiomyopathy; obstructive hypertrophic cardiomyopathy; nonobstructive hypertrophic cardiomyopathy; electrocardiogram; classification

Ask authors/readers for more resources

This study aimed to develop a pragmatic model based on common 12-lead ECG features for the initial identification of obstructive hypertrophic cardiomyopathy (HOCM) and nonobstructive hypertrophic cardiomyopathy (HNCM). The study found that 10 variables out of 30 ECG parameters were significantly different between HOCM and HNCM. The constructed model using P wave interval and SV1 showed a useful ability to discriminate between HOCM and HNCM, and demonstrated good fitness and clinical utility.
Background: The clinical presentation and prognosis of hypertrophic cardiomyopathy (HCM) are heterogeneous between nonobstructive HCM (HNCM) and obstructive HCM (HOCM). Electrocardiography (ECG) has been used as a screening tool for HCM. However, it is still unclear whether the features presented on ECG could be used for the initial classification of HOCM and HNCM. Objective: We aimed to develop a pragmatic model based on common 12-lead ECG features for the initial identification of HOCM/HNCM. Methods: Between April 1st and September 30th, 2020, 172 consecutive HCM patients from the International Cooperation Center for Hypertrophic Cardiomyopathy of Xijing Hospital were prospectively included in the training cohort. Between January 4th and February 30th, 2021, an additional 62 HCM patients were prospectively included in the temporal internal validation cohort. External validation was performed using retrospectively collected ECG data with definite classification (390 HOCM and 499 HNCM ECG samples) from January 1st, 2010 to March 31st, 2020. Multivariable backward logistic regression (LR) was used to develop the prediction model. The discrimination performance, calibration and clinical utility of the model were evaluated. Results: Of all 30 acquired ECG parameters, 10 variables were significantly different between HOCM and HNCM (all P < 0.05). The P wave interval and SV1 were selected to construct the model, which had a clearly useful C-statistic of 0.805 (0.697, 0.914) in the temporal validation cohort and 0.776 (0.746, 0.806) in the external validation cohort for differentiating HOCM from HNCM. The calibration plot, decision curve analysis, and clinical impact curve indicated that the model had good fitness and clinical utility. Conclusion: The pragmatic model constructed by the P wave interval and SV1 had a clearly useful ability to discriminate HOCM from HNCM. The model might potentially serve as an initial classification of HCM before referring patients to dedicated centers and specialists.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available