4.2 Article

DEVELOPMENT AND EVALUATION OF A SYSTEM DYNAMICS MODEL FOR INVESTIGATING AGRICULTURALLY DRIVEN LAND TRANSFORMATION IN THE NORTH CENTRAL UNITED STATES

Journal

NATURAL RESOURCE MODELING
Volume 29, Issue 2, Pages 179-228

Publisher

WILEY-BLACKWELL
DOI: 10.1111/nrm.12087

Keywords

Land transformation; system dynamics; model development; model calibration; model evaluation; computer simulation; Northern Great Plains; Vensim

Ask authors/readers for more resources

Land transformation from grassland to cropland in the Northern Great Plains (NGP) has become a growing concern among many stakeholders. A growing body of work has sought to determine the amount and rate of land use change with less emphasis on the systemic structures or feedback processes of land use decisions. This paper presents the development of a system dynamics simulation model to integrate ecological, economic, and social components influencing land use decisions, including cattle ranching, cropland production, rural communities, land quality, and public policies. Evaluation indicated that the model satisfactorily predicted historical land, agricultural commodity, and rural community data from the model structure. Reference modes for key variables, including the farmland area, were characterized by a bias correction of 0.999, root mean squared error of prediction of 0.053, R-2 of 0.921, and concordance correlation coefficient of 0.0959. The model was robust under extreme and varying sensitivity tests, as well as adequately predicting land use under changing system context. The model's major contributions were the inclusion of decision-making feedbacks from economic and social signals with connectivity to land quality and elasticity values that drive land transformation. Limitations include lack of spatial input and output capabilities useful for visual interfacing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available