4.6 Article

Large electrorheological phenomena in graphene nano-gels

Journal

NANOTECHNOLOGY
Volume 28, Issue 3, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1361-6528/28/3/035702

Keywords

graphene; electrorheology; yield stress; fibrillation; nano-gels; rheology

Funding

  1. IIT Madras
  2. IIT Ropar

Ask authors/readers for more resources

Large-scale electrorheology (ER) response has been reported for dilute graphene nanoflake-based ER fluids that have been engineered as novel, readily synthesizable polymeric gels. Polyethylene glycol (PEG 400) based graphene gels have been synthesized and a very high ER response (similar to 125 000% enhancement in viscosity under influence of an electric field) has been observed for low concentration systems (similar to 2wt.%). The gels overcome several drawbacks innate to ER fluids. The gels exhibit long term stability, a high graphene packing ratio which ensures very high ER response, and the microstructure of the gels ensures that fibrillation of the graphene nanoflakes under an electric field is undisturbed by thermal fluctuations, further leading to mega ER. The gels exhibit a large yield stress handling caliber with a yield stress observed as high as similar to 13 kPa at 2 wt. % for graphene. Detailed investigations on the effects of graphene concentration, electric field strength, imposed shear resistance, transients of electric field actuation on the ER response and ER hysteresis of the gels have been performed. In-depth analyses with explanations have been provided for the observations and effects, such as inter flake lubrication/slip induced augmented ER response. The present gels show great promise as potential ER gels for various smart applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available