4.8 Article

A 3D triple-deck photoanode with a strengthened structure integrality: enhanced photoelectrochemical water oxidation

Journal

NANOSCALE
Volume 8, Issue 6, Pages 3474-3481

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5nr08604c

Keywords

-

Funding

  1. NRF of Korea - Ministry of Science, ICT & Future Planning [NRF-2013R1A2A1A09014038]

Ask authors/readers for more resources

4 WO3/BiVO4 is one of the attractive Type II heterojunctions for photoelectrochemical (PEC) water splitting due to its well-matched band edge positions and visible light harvesting abilities. However, two light absorption components generally suffer from poor charge collection and cannot be efficiently utilized because of non-ideal interfaces. Herein, a triple-deck three-dimensional (3D) architecture was designed through a one-step shaping process with an additional stress relaxation WO3 underlayer. The final photoanodes showed a promising photocurrent density of 5.1 mA cm(-2) at 1.23 V vs. RHE under AM 1.5G illumination. Using the uniformly distributed oxygen evolution co-catalyst (OEC) layer as the outer most shell of the WO3/BiVO4/OEC triple-deck 3D structure with a dense WO3 underlayer, the water splitting efficiency was improved dramatically by facilitating the charge transfer process at the electrode/electrolyte interface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Review Chemistry, Multidisciplinary

Advances in Colloidal Building Blocks: Toward Patchy Colloidal Clusters

You-Jin Kim, Jeong-Bin Moon, Hyerim Hwang, Youn Soo Kim, Gi-Ra Yi

Summary: Significant progress has been made in the synthesis and assembly of patchy colloidal clusters in recent years. These clusters, through a DNA-mediated interlocking process, can form directional bonding with specific rotation angles, and have potential applications in photonic crystals, metamaterials, topological photonic insulators, and separation membranes.

ADVANCED MATERIALS (2023)

Article Chemistry, Multidisciplinary

Photo-Electrochemical Glycerol Conversion over a Mie Scattering Effect Enhanced Porous BiVO4 Photoanode

Cheng Lin, Chaoran Dong, Sungsoon Kim, Yuan Lu, Yulan Wang, Zhiyang Yu, Yu Gu, Zhiyuan Gu, Dong Ki Lee, Kan Zhang, Jong Hyeok Park

Summary: By a simple annealing process, an enhanced Mie scattering effect of the well-documented porous BiVO4 photoanode was obtained, which significantly reduced reflectivity, increased light absorbability, and achieved efficient photo-electrochemical (PEC) oxidation of glycerol (GLY) to dihydroxyacetone (DHA) on the photoanode.

ADVANCED MATERIALS (2023)

Article Chemistry, Physical

Interwoven carbon nanotube-poly(acrylic acid) network scaffolds for stable Si microparticle battery anode

Gwanghyun Lee, Yunkyu Choi, Hyungjoon Ji, Ju Yeon Kim, Jeong Pil Kim, Junhyeok Kang, Ohchan Kwon, Dae Woo Kim, Jong Hyeok Park

Summary: A highly stable silicon microparticle anode with high energy density is achieved using a hybrid binder made of functionalized carbon nanotubes and poly(acrylic acid). The anode exhibits excellent stability and capacity retention during cycling tests.

CARBON (2023)

Article Engineering, Chemical

Selective and uniform Li-ion boosting polymer electrolytes for dendrite-less quasi-solid-state batteries

Daero Lee, Chanui Park, Young Gyun Choi, Seunghyok Rho, Won Bo Lee, Jong Hyeok Park

Summary: A selective Li+ conductive solid-state electrolyte (SLCSE) composed of a highly conductive CMA polymer matrix and branched polyamine is reported. The incorporation of rigid benzene-ring constituents in the matrix enhances both mechanical strength and Li+ transportation. The SLCSE exhibits high ionic conductivity, high Li+ transference number, and exceptional stability, making it a promising candidate for solid-state Li-metal batteries.

JOURNAL OF MEMBRANE SCIENCE (2023)

Article Materials Science, Multidisciplinary

Optimizing Surface Composition and Structure of FeWO4 Photoanodes for Enhanced Water Photooxidation

Xuan Minh Chau Ta, Thi Kim Anh Nguyen, Anh Dinh Bui, Hieu T. T. Nguyen, Rahman Daiyan, Rose Amal, Thanh Tran-Phu, Antonio Tricoli

Summary: Photoelectrochemical water splitting is a promising approach to produce green hydrogen using solar energy. However, the lack of efficient photoanodes to catalyze the water photooxidation reaction remains a challenge. In this study, nanostructured FeWO4 photoanodes were synthesized on a fluorine doped tin oxide glass substrate via a scalable and ultra-fast flame synthesis route. The optimized FeWO4 photoanode with a bandgap of 1.82 eV and a FeOOH/NiOOH co-catalyst coating showed improved water photooxidation performance and good photostability, providing insights for the engineering of small band-gap catalysts for various photoelectrochemical applications.

ADVANCED MATERIALS TECHNOLOGIES (2023)

Article Chemistry, Physical

Boosting hole migration through oxygen species-functionalized graphene interlayer for organic-based optoelectronic devices with enhanced efficiency and long-term durability

Unbeom Baeck, Duong Nguyen Nguyen, Minsup Choi, Jaekyum Kim, Woo-Seok Choe, Jun Young Lee, Young-Seok Kim, Jung Kyu Kim

Summary: The use of oxygen-functionalized graphene as a hole interfacial layer can significantly improve the hole-transport properties and long-term stability of PEDOT:PSS, leading to improved performance in organic optoelectronic devices.

APPLIED SURFACE SCIENCE (2023)

Article Engineering, Environmental

Intensified near-field by localizing surface plasmon for enhancing photoelectrochemical responses via periodically patterned Au assemblies

Young Moon Choi, Seung Hun Roh, Eujin Kwak, Dae-Geun Choi, Seok Joon Kwon, Jung Kyu Kim, Jong Hyeok Park

Summary: The introduction of plasmon induced energy transfer (PIET) is a promising approach to improve the photo-electrochemical (PEC) responses on metal-oxide based photoelectrodes. This study demonstrates effective localization of a plasmon-induced near-field on a photoelectrode via patterned Au NP assemblies (Au-PAT) that enhances the PEC responses for oxidation reactions. The optimized grating pitch of Au-PAT enhances the light absorption efficiency and increases the interband transition rate via PIET.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Chemistry, Multidisciplinary

Tailoring the Nanoporosity and Photoactivity of Metal-Organic Frameworks With Rigid Dye Modulators for Toluene Purification

Jie Jin, Shipeng Wan, SunJe Lee, Cheoulwoo Oh, Gyu Yong Jang, Kan Zhang, Ziyang Lu, Jong Hyeok Park

Summary: A micromolar amount of dye-based modulator (Rhodamine B) is used to easily and controllably tailor the pore size of a Ti-based metal-organic framework (MIL-125-NH2). The resulting hierarchically porous MIL-125-NH2 (RH-MIL-125-NH2) exhibits optimized adsorption and photocatalytic activity. This work provides a meaningful basis for the construction of hierarchically porous MOFs and demonstrates the superiority of the hierarchical pore structure for adsorption and heterogeneous catalysis.

SMALL (2023)

Article Multidisciplinary Sciences

Ultrahigh loading dry-process for solvent-free lithium-ion battery electrode fabrication

Minje Ryu, Young-Kuk Hong, Sang-Young Lee, Jong Hyeok Park

Summary: In this study, a feasible and sustainable dry press-coating process is proposed to fabricate electrodes for lithium-ion batteries. This process improves the mechanical strength and performance of the electrodes compared to traditional wet coating, allowing for high loading and impressive specific energy and volumetric energy density.

NATURE COMMUNICATIONS (2023)

Article Chemistry, Physical

Extended Lifespan of Low-Cost Metal Silicon Anodes via a One-Step Wet Ball-Milling Process for Ultra-Thin Polymer Protecting Layer and Optimal Particle Size

Han Gyo Jeong, Gwanghyun Lee, Jong Hyeok Park

Summary: Silicon is a promising active material for lithium-ion batteries with a high theoretical capacity. However, its fabrication requires complicated and high-cost processes to improve cyclic performance. Herein, we report a one-step wet ball-milling process to fabricate submicron silicon particles coated with a polyacrylonitrile (PAN) layer, which enhances electrolyte wettability and increases lithium-ion pathways on the silicon surface. These improvements result in a stable solid electrolyte interphase layer and reduced internal resistance of the electrodes. The silicon anodes with optimal particle size and PAN layer exhibit superior performance even at ultra-fast current density, and when combined with an NCM712 cathode, a full-cell demonstrates excellent performance.

ACS APPLIED ENERGY MATERIALS (2023)

Review Chemistry, Physical

Advances of sulfide-type solid-state batteries with negative electrodes: Progress and perspectives

Seonghun Jeong, Yuankai Li, Woo Hyeong Sim, Junyoung Mun, Jung Kyu Kim, Hyung Mo Jeong

Summary: All-solid-state batteries (ASSBs) are attracting considerable attention due to their safety and high energy density, which meet the requirements of emerging battery applications. Current research focuses on utilizing high-energy negative electrode materials and reducing the amount of electrolyte to achieve high energy density in ASSBs. Sulfide-based ASSBs with high ionic conductivity and low physical contact resistance are gaining interest. This review summarizes various anode materials for ASSBs operating under electrochemically reducing conditions, and discusses strategies for mitigating interfacial failures through interlayer and electrode design.

ECOMAT (2023)

Review Energy & Fuels

Prospects and Promises in Two-Electron Water Oxidation for Hydrogen Peroxide Generation

Jinghan Wang, Dokyoon Kim, Jong Hyeok Park, Sangwoo Ryu, Mohammadreza Shokouhimehr, Ho Won Jang

Summary: This article reviews recent advancements in the electrochemical and photoelectrochemical production of H2O2, discussing the fundamental mechanism, electrode design, and engineering strategies. It also addresses the obstacles and challenges of this process, as well as methods to enhance H2O2 production and efficiency.

ENERGY & FUELS (2023)

Article Chemistry, Multidisciplinary

Heterogeneous Catalyst as a Functional Substrate Governing the Shape of Electrochemical Precipitates in Oxygen-Fueled Rechargeable Batteries

Mihui Park, Seonyong Cho, Junghoon Yang, Vincent Wing-hei Lau, Kwang Hee Kim, Jong Hyeok Park, Stefan Ringe, Yong-Mook Kang

Summary: The use of heterogeneous catalysts as substrates can regulate the growth of Li2O2 and the formation of solid/solid reaction interfaces, improving the reversibility, capacity, and durability of lithium-oxygen batteries.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2023)

Article Multidisciplinary Sciences

Electro-assisted methane oxidation to formic acid via in-situ cathodically generated H2O2 under ambient conditions

Jiwon Kim, Jae Hyung Kim, Cheoulwoo Oh, Hyewon Yun, Eunchong Lee, Hyung-Suk Oh, Jong Hyeok Park, Yun Jeong Hwang

Summary: An electro-assisted approach using acid-treated carbon electrocatalyst and in-situ cathodically generated reactive oxygen species is proposed for the partial oxidation of methane at ambient temperature and pressure. Reactive oxygen species activate methane and methanol, leading to selective methane partial oxidation. This study presents a method for the electrochemically assisted partial oxidation of methane to produce liquid oxygenate, HCOOH, selectively.

NATURE COMMUNICATIONS (2023)

Review Chemistry, Physical

Organic Upgrading through Photoelectrochemical Reactions: Toward Higher Profits

Tae-Kyung Liu, Gyu Yong Jang, Sungsoon Kim, Kan Zhang, Xiaolin Zheng, Jong Hyeok Park

Summary: Aqueous photoelectrochemical (PEC) cells are a promising technology for converting solar energy into hydrogen, but their efficiency and cost-effectiveness are limited by sluggish oxygen evolution reaction (OER) kinetics and the low economic value of the produced oxygen gas. Organic upgrading PEC reactions, especially alternative OERs, have gained considerable attention for improving efficiency and economic effectiveness. This review provides an overview of PEC reaction fundamentals, cost analysis, recent advances in organic upgrading reactions using different substrates, and discusses the current status, future prospects, and challenges towards industrial applications.

SMALL METHODS (2023)

Article Chemistry, Multidisciplinary

Exploring the degradation of silver nanowire networks under thermal stress by coupling in situ X-ray diffraction and electrical resistance measurements

Laetitia Bardet, Herve Roussel, Stefano Saroglia, Masoud Akbari, David Munoz-Rojas, Carmen Jimenez, Aurore Denneulin, Daniel Bellet

Summary: The thermal instability of silver nanowires leads to increased electrical resistance in AgNW networks. Understanding the relationship between structural and electrical properties of AgNW networks is crucial for their integration as transparent electrodes in flexible optoelectronics. In situ X-ray diffraction measurements were used to study the crystallographic evolution of Ag-specific Bragg peaks during thermal ramping, revealing differences in thermal and structural transitions between bare and SnO2-coated AgNW networks.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Recording physiological and pathological cortical activity and exogenous electric fields using graphene microtransistor arrays in vitro

Nathalia Cancino-Fuentes, Arnau Manasanch, Joana Covelo, Alex Suarez-Perez, Enrique Fernandez, Stratis Matsoukis, Christoph Guger, Xavi Illa, Anton Guimera-Brunet, Maria V. Sanchez-Vives

Summary: This study provides a comprehensive characterization of graphene-based solution-gated field-effect transistors (gSGFETs) for brain recordings, highlighting their potential clinical applications.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Metal oxide-embedded carbon-based materials for polymer solar cells and X-ray detectors

Sikandar Aftab, Hailiang Liu, Dhanasekaran Vikraman, Sajjad Hussain, Jungwon Kang, Abdullah A. Al-Kahtani

Summary: This study examines the effects of hybrid nanoparticles made of NiO@rGO and NiO@CNT on the active layers of polymer solar cells and X-ray photodetectors. The findings show that these hybrid nanoparticles can enhance the charge carrier capacities and exciton dissociation properties of the active layers. Among the tested configurations, the NiO@CNT device demonstrates superior performance in converting sunlight into electricity, and achieves the best sensitivity for X-ray detection.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Peptide-mediated targeted delivery of SOX9 nanoparticles into astrocytes ameliorates ischemic brain injury

Hyo Jung Shin, Seung Gyu Choi, Fengrui Qu, Min-Hee Yi, Choong-Hyun Lee, Sang Ryong Kim, Hyeong-Geug Kim, Jaewon Beom, Yoonyoung Yi, Do Kyung Kim, Eun-Hye Joe, Hee-Jung Song, Yonghyun Kim, Dong Woon Kim

Summary: This study investigates the role of SOX9 in reactive astrocytes following ischemic brain damage using a PLGA nanoparticle plasmid delivery system. The results demonstrate that PLGA nanoparticles can reduce ischemia-induced neurological deficits and infarct volume, providing a potential opportunity for stroke treatment.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Spontaneous unbinding transition of nanoparticles adsorbing onto biomembranes: interplay of electrostatics and crowding

Anurag Chaudhury, Koushik Debnath, Nikhil R. Jana, Jaydeep K. Basu

Summary: The study investigates the interaction between nanoparticles and cell membranes, and identifies key parameters, including charge, crowding, and membrane fluidity, that determine the adsorbed concentration and unbinding transition of nanoparticles.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Autonomous nanomanufacturing of lead-free metal halide perovskite nanocrystals using a self-driving fluidic lab

Sina Sadeghi, Fazel Bateni, Taekhoon Kim, Dae Yong Son, Jeffrey A. Bennett, Negin Orouji, Venkat S. Punati, Christine Stark, Teagan D. Cerra, Rami Awad, Fernando Delgado-Licona, Jinge Xu, Nikolai Mukhin, Hannah Dickerson, Kristofer G. Reyes, Milad Abolhasani

Summary: In this study, an autonomous approach for the development of lead-free metal halide perovskite nanocrystals is presented, which integrates a modular microfluidic platform with machine learning-assisted synthesis modeling. This approach enables rapid and optimized synthesis of copper-based lead-free nanocrystals.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

In situ growth of a redox-active metal-organic framework on electrospun carbon nanofibers as a free-standing electrode for flexible energy storage devices

Zahir Abbas, Nissar Hussain, Surender Kumar, Shaikh M. Mobin

Summary: The rational construction of free-standing and flexible electrodes for electrochemical energy storage devices is an emerging research focus. In this study, a redox-active metal-organic framework (MOF) was prepared on carbon nanofibers using an in situ approach, resulting in a flexible electrode with high redox-active behavior and unique properties such as high flexibility and lightweight. The prepared electrode showed excellent cyclic retention and rate capability in supercapacitor applications. Additionally, it could be used as a freestanding electrode in flexible devices at different bending angles.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

A NIR-driven green affording-oxygen microrobot for targeted photodynamic therapy of tumors

Lishan Zhang, Xiaoting Zhang, Hui Ran, Ze Chen, Yicheng Ye, Jiamiao Jiang, Ziwei Hu, Miral Azechi, Fei Peng, Hao Tian, Zhili Xu, Yingfeng Tu

Summary: Photodynamic therapy (PDT) is a promising local treatment modality in cancer therapy, but its therapeutic efficacy is restricted by ineffective delivery of photosensitizers and tumor hypoxia. In this study, a phototactic Chlorella-based near-infrared (NIR) driven green affording-oxygen microrobot system was developed for enhanced PDT. The system exhibited desirable phototaxis and continuous oxygen generation, leading to the inhibition of tumor growth in mice. This study demonstrates the potential of using a light-driven green affording-oxygen microrobot to enhance photodynamic therapy.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Novel hollow MoS2@C@Cu2S heterostructures for high zinc storage performance

Yujin Li, Jing Xu, Xinqi Luo, Futing Wang, Zhong Dong, Ke-Jing Huang, Chengjie Hu, Mengyi Hou, Ren Cai

Summary: In this study, hollow heterostructured materials were constructed using an innovative template-engaged method as cathodes for zinc-ion batteries. The materials exhibited fast Zn2+ transport channels, improved electrical conductivity, and controlled volume expansion during cycling. The designed structure allowed for an admirable reversible capacity and high coulombic efficiency.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Mechanistic elucidation of the catalytic activity of silver nanoclusters: exploring the predominant role of electrostatic surface

Paritosh Mahato, Shashi Shekhar, Rahul Yadav, Saptarshi Mukherjee

Summary: This study comprehensively elucidates the role of the core and electrostatic surface of metal nanoclusters in catalytic reduction reactions. The electrostatic surface dramatically modulates the reactivity of metal nanoclusters.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Facile green synthesis of wasted hop-based zinc oxide nanozymes as peroxidase-like catalysts for colorimetric analysis

Pei Liu, Mengdi Liang, Zhengwei Liu, Haiyu Long, Han Cheng, Jiahe Su, Zhongbiao Tan, Xuewen He, Min Sun, Xiangqian Li, Shuai He

Summary: This study demonstrates a simple and environmentally-friendly method for the synthesis of zinc oxide nanozymes (ZnO NZs) using wasted hop extract (WHE). The WHE-ZnO NZs exhibit exceptional peroxidase-like activity and serve as effective catalysts for the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). In addition, a straightforward colorimetric technique for detecting both H2O2 and glucose was developed using the WHE-ZnO NZs as peroxidase-like catalysts.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Impact of channel nanostructures of porous carbon particles on their catalytic performance

Hyunkyu Oh, Young Jun Lee, Eun Ji Kim, Jinseok Park, Hee-Eun Kim, Hyunsoo Lee, Hyunjoo Lee, Bumjoon J. Kim

Summary: Mesoporous carbon particles have unique structural properties that make them suitable as support materials for catalytic applications. This study investigates the impact of channel nanostructures on the catalytic activity of porous carbon particles (PCPs) by fabricating PCPs with controlled channel exposure on the carbon surface. The results show that PCPs with highly open channel nanostructures exhibit significantly higher catalytic activity compared to those with closed channel nanostructures.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Fabrication of a tough, long-lasting adhesive hydrogel patch via the synergy of interfacial entanglement and adhesion group densification

Yunjie Lu, Zhaohui Li, Zewei Li, Shihao Zhou, Ning Zhang, Jianming Zhang, Lu Zong

Summary: A tough, long-lasting adhesive and highly conductive nanocomposite hydrogel (PACPH) was fabricated via the synergy of interfacial entanglement and adhesion group densification. PACPH possesses excellent mechanical properties, interfacial adhesion strength, and conductivity, making it a promising material for long-term monitoring of human activities and electrocardiogram signals.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Strongly coupled plasmonic metal nanoparticles with reversible pH-responsiveness and highly reproducible SERS in solution

Zichao Wei, Audrey Vandergriff, Chung-Hao Liu, Maham Liaqat, Mu-Ping Nieh, Yu Lei, Jie He

Summary: We have developed a simple method to prepare polymer-grafted plasmonic metal nanoparticles with pH-responsive surface-enhanced Raman scattering. By using pH-responsive polymers as ligands, the aggregation of nanoparticles can be controlled, leading to enhanced SERS. The pH-responsive polymer-grafted nanoparticles show high reproducibility and sensitivity in solution, providing a novel approach for SERS without the need for sample pre-concentration.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Unlocking the full potential of citric acid-synthesized carbon dots as a supercapacitor electrode material via surface functionalization

Melis Ozge Alas Colak, Ahmet Gungor, Merve Buldu Akturk, Emre Erdem, Rukan Genc

Summary: This research investigates the effect of functionalizing carbon dots with hydroxyl polymers on their performance as electrode materials in a supercapacitor. The results show that the functionalized carbon dots exhibit excellent electrochemical performance and improved stability.

NANOSCALE (2024)