4.6 Article

Cell-nucleus structured electrolyte for low-temperature aqueous zinc batteries

Journal

JOURNAL OF ENERGY CHEMISTRY
Volume 83, Issue -, Pages 324-332

Publisher

ELSEVIER
DOI: 10.1016/j.jechem.2023.04.017

Keywords

Aqueous zinc batteries; Low temperature; Cell-nucleus solvation structure; Zn metal anode; Solid electrolyte interphase

Ask authors/readers for more resources

Researchers have designed an electrolyte structure with 1,2-dimethoxyethane as an additive, which enables rechargeable aqueous zinc batteries to achieve good reaction kinetics and cycling stability at low temperatures.
Rechargeable aqueous zinc (Zn) batteries hold great promise for large-scale energy storage, but their implementation is plagued by poor Zn reversibility and unsatisfactory low-temperature performance. Herein, we design a cell-nucleus structured electrolyte by introducing low-polarity 1,2-dimethoxyethane (DME) into dilute 1 M zinc trifluoromethanesulfonate (Zn(OTf)2) aqueous solution, which features an OTf--rich Zn2+-primary solvation sheath (PSS, inner nucleus) and the DME-modulated Zn2+-outer solvation sheath (outer layer). We find that DME additives with a low dosage do not participate in the Zn2+-PSS but reinforce the Zn-OTf- coordination, which guarantees good reaction kinetics under ultralow temperatures. Moreover, DME breaks the original H-bonding network of H2O, depressing the freezing point of electrolyte to-52.4 & DEG;C. Such a cell-nucleus-solvation structure sup-presses the H2O-induced side reactions and forms an anion-derived solid electrolyte interphase on Zn and can be readily extended to 1,2-diethoxyethane. The as-designed electrolyte enables the Zn electrode deep cycling stability over 3500 h with a high depth-of-discharge of 51.3% and endows the Zn||V2O5 full battery with stable cycling over 1000 cycles at-40 & DEG;C. This work would inspire the solvation structure design for low-temperature aqueous batteries.& COPY; 2023 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Nanoscience & Nanotechnology

Microsized Antimony as a Stable Anode in Fluoroethylene Carbonate Containing Electrolytes for Rechargeable Lithium-/Sodium-Ion Batteries

Xu Bian, Yang Dong, Dongdong Zhao, Xingtao Ma, Mande Qiu, Jianzhong Xu, Lifang Jiao, Fangyi Cheng, Ning Zhang

ACS APPLIED MATERIALS & INTERFACES (2020)

Article Chemistry, Physical

Zinc anode stabilized by an organic-inorganic hybrid solid electrolyte interphase

Shengli Di, Xueyu Nie, Guoqiang Ma, Wentao Yuan, Yuanyuan Wang, Yongchang Liu, Shigang Shen, Ning Zhang

Summary: By pre-cycling Zn electrodes in an organic electrolyte, a stable organic-inorganic hybrid SEI layer can be formed on the Zn electrode, effectively reducing dendrite growth and water-induced side reactions in aqueous batteries, and improving the stability and lifespan of Zn electrodes.

ENERGY STORAGE MATERIALS (2021)

Article Nanoscience & Nanotechnology

Stabilizing Zinc Electrodes with a Vanillin Additive in Mild Aqueous Electrolytes

Kang Zhao, Fangming Liu, Guilan Fan, Jiuding Liu, Meng Yu, Zhenhua Yan, Ning Zhang, Fangyi Cheng

Summary: The use of vanillin as a bifunctional additive in aqueous electrolyte stabilizes Zn electrochemistry, resulting in compact, dendrite-free Zn deposition and a stable electrode-electrolyte interface. This approach significantly improves the performance of aqueous Zn batteries, offering a cost-effective strategy for high-performance battery design.

ACS APPLIED MATERIALS & INTERFACES (2021)

Article Chemistry, Multidisciplinary

Aqueous Electrolytes with Hydrophobic Organic Cosolvents for Stabilizing Zinc Metal Anodes

Licheng Miao, Renheng Wang, Shengli Di, Zhengfang Qian, Lei Zhang, Wenli Xin, Mengyu Liu, Zhiqiang Zhu, Shengqi Chu, Yi Du, Ning Zhang

Summary: The introduction of a hydrophobic carbonate cosolvent in rechargeable aqueous zinc batteries can address the irreversible issues of Zn metal anodes by breaking the water's H-bond network, replacing solvating H2O, and creating a dendrite-free Zn2+-plating behavior. This efficient strategy with a hydrophobic cosolvent offers a promising direction for designing aqueous battery chemistries.

ACS NANO (2022)

Article Chemistry, Multidisciplinary

Cholinium Cations Enable Highly Compact and Dendrite-Free Zn Metal Anodes in Aqueous Electrolytes

Xueyu Nie, Licheng Miao, Wentao Yuan, Guoqiang Ma, Shengli Di, Yuanyuan Wang, Shigang Shen, Ning Zhang

Summary: It is reported that introducing cholinium cations into aqueous electrolytes enables a compact and non-dendritic Zn electrode with excellent electrochemical performances. The bulky cholinium cations create a leveling effect to homogenize Zn deposition and disrupt the original H-bonded network of water, reducing side reactions and promoting Zn2+ de-solvation. The optimized electrolyte shows remarkable Coulombic efficiency and cycling stability in Zn batteries.

ADVANCED FUNCTIONAL MATERIALS (2022)

Article Engineering, Environmental

In-situ construction of a hydroxide-based solid electrolyte interphase for robust zinc anodes

Wentao Yuan, Guoqiang Ma, Xueyu Nie, Yuanyuan Wang, Shengli Di, Liubin Wang, Jing Wang, Shigang Shen, Ning Zhang

Summary: This study builds a robust and conductive ZnSO4.2H2O SEI layer on zinc anode in non-concentrated aqueous electrolyte, which terminates continuous HER and Zn corrosion, leading to high reversibility and long cycling life.

CHEMICAL ENGINEERING JOURNAL (2022)

Article Chemistry, Physical

Reshaping the electrolyte structure and interface chemistry for stable aqueous zinc batteries

Guoqiang Ma, Licheng Miao, Yang Dong, Wentao Yuan, Xueyu Nie, Shengli Di, Yuanyuan Wang, Liubin Wang, Ning Zhang

Summary: In this study, the stability of metallic zinc anode in aqueous batteries was significantly improved by using a non-concentrated aqueous zinc trifluoromethanesulfonate electrolyte with 1,2-dimethoxyethane additive. The introduction of DME disrupted the original hydrogen-bond network of water and created a unique Zn2+-solvation structure, effectively suppressing water-induced side reactions. The in-situ formation of an organic-inorganic hybrid interphase on the zinc anode further prevented water penetration and dendrite growth. This novel electrolyte enabled the zinc anodes to achieve unprecedented cycling stability and high reversibility.

ENERGY STORAGE MATERIALS (2022)

Article Chemistry, Multidisciplinary

Realizing Textured Zinc Metal Anodes through Regulating Electrodeposition Current for Aqueous Zinc Batteries

Wentao Yuan, Xueyu Nie, Guoqiang Ma, Mengyu Liu, Yuanyuan Wang, Shigang Shen, Ning Zhang

Summary: In this study, a current-controlled electrodeposition strategy was developed to texture the zinc electrodeposits in conventional aqueous electrolytes. The texture of the zinc deposits gradually transformed from (101) to (002) crystal plane by increasing the current density. The (002) textured zinc electrode showed stronger resistance to dendrite growth and interfacial side reactions, and supported the stable operation of full batteries with conventional V/Mn-based oxide cathodes.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Chemistry, Physical

Zn metal anodes stabilized by an intrinsically safe, dilute, and hydrous organic electrolyte

Guoqiang Ma, Shengli Di, Yuanyuan Wang, Wentao Yuan, Xiuwen Ji, Kaiyue Qiu, Mengyu Liu, Xueyu Nie, Ning Zhang

Summary: This article reports a diluted and hydrous organic electrolyte for highly reversible Zn batteries. The electrolyte, consisting of hydrated Zn(BF4)2 salt and trimethyl phosphate (TMP) solvent, enables compact, dendrite-free, and corrosion-free Zn electrodeposition.

ENERGY STORAGE MATERIALS (2023)

Article Chemistry, Multidisciplinary

In-Situ Integration of a Hydrophobic and Fast-Zn2+-Conductive Inorganic Interphase to Stabilize Zn Metal Anodes

Mengyu Liu, Wentao Yuan, Guoqiang Ma, Kaiyue Qiu, Xueyu Nie, Yongchang Liu, Shigang Shen, Ning Zhang

Summary: A hydrophobic and fast-Zn2+-conductive zinc hexacyanoferrate (HB-ZnHCF) interphase layer is integrated on Zn to prevent water-induced corrosion and dendrite growth. The HB-ZnHCF layer effectively blocks the access of water molecules to the Zn surface, ensuring fast ion transport and stable cycling.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Chemistry, Physical

Ultrafast 3D Hybrid-Ion Transport in Porous V2O5 Cathodes for Superior-Rate Rechargeable Aqueous Zinc Batteries

Tianhao Wang, Shengwei Li, Xinger Weng, Lei Gao, Yu Yan, Ning Zhang, Xuanhui Qu, Lifang Jiao, Yongchang Liu

Summary: In this study, hierarchically porous V2O5 nanosheets vertically grown on carbon cloth were prepared, providing additional ion-diffusion channels and abundant active sites. The V2O5/C electrode exhibited exceptional high-rate capability and ultralong cycling durability in rechargeable aqueous zinc-based batteries. Moreover, the quasi-solid-state wearable zinc batteries employing the porous V2O5/C cathode demonstrated respectable performance even under severe deformations and low temperatures.

ADVANCED ENERGY MATERIALS (2023)

Article Chemistry, Multidisciplinary

Non-flammable, dilute, and hydrous organic electrolytes for reversible Zn batteries

Guoqiang Ma, Licheng Miao, Wentao Yuan, Kaiyue Qiu, Mengyu Liu, Xueyu Nie, Yang Dong, Ning Zhang, Fangyi Cheng

Summary: A non-flammable, dilute, and hydrous organic electrolyte containing low-cost hydrated Zn(ClO4)2·6H2O dissolved in trimethyl phosphate (TMP) is reported in this study. It can stabilize the Zn anode and enhance the reversibility and electrochemical window of the battery. The Zn anode exhibits high efficiency, long-term cycling, and stable operation in this electrolyte.

CHEMICAL SCIENCE (2022)

Review Chemistry, Multidisciplinary

Materials chemistry for rechargeable zinc-ion batteries

Ning Zhang, Xuyong Chen, Meng Yu, Zhiqiang Niu, Fangyi Cheng, Jun Chen

CHEMICAL SOCIETY REVIEWS (2020)

Article Chemistry, Physical

Nonaqueous electrolyte with dual-cations for high-voltage and long-life zinc batteries

Yang Dong, Shengli Di, Fangbo Zhang, Xu Bian, Yuanyuan Wang, Jianzhong Xu, Liubin Wang, Fangyi Cheng, Ning Zhang

JOURNAL OF MATERIALS CHEMISTRY A (2020)

Article Chemistry, Applied

In-situ coating and surface partial protonation co-promoting performance of single-crystal nickel-rich cathode in all-solid-state batteries

Maoyi Yi, Jie Li, Mengran Wang, Xinming Fan, Bo Hong, Zhian Zhang, Aonan Wang, Yanqing Lai

Summary: In this study, polyacrylic acid (PAA) was used as a binder for the cathode in all-solid-state batteries. Through H+/Li+ exchange reaction, a uniform PAA-Li coating layer was formed on the cathode surface, improving the stability of the cathodic interface and the crystal structure. The SC-NCM83-PAA cathode exhibited superior cycling performance compared to traditional PVDF binder.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Arbitrary skin metallization by pencil-writing inspired solid-ink rubbing for advanced energy storage and harvesting

Yonghan Zhou, Zhongfeng Ji, Wenrui Cai, Xuewei He, Ruiying Bao, Xuewei Fu, Wei Yang, Yu Wang

Summary: By learning from the pencil-writing process, a solid-ink rubbing technology (SIR-tech) has been invented to develop durable metallic coatings on diverse substrates. The composite metallic skin by SIR-tech outperforms pure liquid-metal coating and shows great potential for various applications.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Coupling Sb2WO6 microflowers and conductive polypyrrole for efficient potassium storage by enhanced conductivity and K plus diffusivity

Ruiqi Tian, Hehe Zhang, Zeyu Yuan, Yuehua Man, Jianlu Sun, Jianchun Bao, Ming-Sheng Wang, Xiaosi Zhou

Summary: In this study, polypyrrole-encapsulated Sb2WO6 microflowers were synthesized and demonstrated to exhibit excellent potassium storage properties and cycling stability. The improved performance of Sb2WO6@PPy was attributed to the unique microflower structure, enhanced electronic conductivity, and protective PPy coating.

JOURNAL OF ENERGY CHEMISTRY (2024)

Review Chemistry, Applied

Physics-based battery SOC estimation methods: Recent advances and future perspectives

Longxing Wu, Zhiqiang Lyu, Zebo Huang, Chao Zhang, Changyin Wei

Summary: This paper presents a comprehensive survey on physics-based state of charge (SOC) algorithms applied in advanced battery management system (BMS). It discusses the research progresses of physical SOC estimation methods for lithium-ion batteries and presents future perspectives for this field.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

d-d Orbital coupling induced by crystal-phase engineering assists acetonitrile electroreduction to ethylamine

Honggang Huang, Yao Chen, Hui Fu, Cun Chen, Hanjun Li, Zhe Zhang, Feili Lai, Shuxing Bai, Nan Zhang, Tianxi Liu

Summary: The d-d orbital coupling induced by crystal-phase engineering effectively adjusts the electronic structure of electrocatalysts, improving their activity and stability, which is significant for electrocatalyst research.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

In-doping collaboratively controlling back interface and bulk defects to achieve efficient flexible CZTSSe solar cells

Quanzhen Sun, Yifan Li, Caixia Zhang, Shunli Du, Weihao Xie, Jionghua Wu, Qiao Zheng, Hui Deng, Shuying Cheng

Summary: In this study, indium (In) ions were introduced into flexible Cu2ZnSn(S,Se)(4) (CZTSSe) solar cells to modify the back interface and passivate deep level defects in CZTSSe bulk. The results showed that In doping effectively inhibited the formation of secondary phase and V-Sn defects, decreased the barrier height at the back interface, passivated deep level defects in CZTSSe bulk, increased carrier concentration, and significantly reduced the V-OC deficit. Eventually, a flexible CZTSSe solar cell with a power conversion efficiency of 10.01% was achieved. This synergistic strategy of interface modification and bulk defects passivation through In incorporation provides a new approach for fabricating efficient flexible kesterite-based solar cells.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Toward a comprehensive hypothesis of oxygen-evolution reaction in the presence of iron and gold

Negah Hashemi, Jafar Hussain Shah, Cejun Hu, Subhajit Nandy, Pavlo Aleshkevych, Sumbal Farid, Keun Hwa Chae, Wei Xie, Taifeng Liu, Junhu Wang, Mohammad Mahdi Najafpour

Summary: This study investigates the effects of Fe on the oxygen-evolution reaction (OER) in the presence of Au. The study identifies two distinct areas of OER associated with Fe and Au sites at different overpotentials. Various factors were varied to observe the behaviors of FeOxHy/Au during OER. The study reveals strong electronic interaction between Fe and Au, and proposes a lattice OER mechanism based on FeOxHy.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Exploring the impact of Nafion modifier on electrocatalytic CO2 reduction over Cu catalyst

Yingshi Su, Yonghui Cheng, Zhen Li, Yanjia Cui, Caili Yang, Ziyi Zhong, Yibing Song, Gongwei Wang, Lin Zhuang

Summary: This study systematically investigates the key roles of Nafion on Cu nanoparticles electrocatalyst for CO2RR. The Nafion modifier suppresses the hydrogen evolution reaction, increases CO2 concentration and mass transfer process, and activates CO2 molecule to enhance C2 product generation. As a result, the selectivity of the hydrogen evolution reaction is reduced and the efficiency of C2 products is significantly improved.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Electronic structure and spin state regulation of vanadium nitride via a sulfur doping strategy toward flexible zinc-air batteries

Daijie Deng, Honghui Zhang, Jianchun Wu, Xing Tang, Min Ling, Sihua Dong, Li Xu, Henan Li, Huaming Li

Summary: By doping sulfur into vanadium nitride, the S-VN/Co/NS-MC catalyst exhibits enhanced oxygen reduction reaction activity and catalytic performance. When applied in liquid and flexible ZABs, it shows higher power density, specific capacity, and cycling stability.

JOURNAL OF ENERGY CHEMISTRY (2024)

Review Chemistry, Applied

Self-assembly of perovskite nanocrystals: From driving forces to applications

Yi Li, Fei Zhang

Summary: Self-assembly of metal halide perovskite nanocrystals holds significant application value in the fields of display, detector, and solar cell due to their unique collective properties. This review covers the driving forces, commonly used methods, and different self-assembly structures of perovskite nanocrystals. Additionally, it summarizes the collective optoelectronic properties and application areas of perovskite superlattice structures, and presents an outlook on potential issues and future challenges in the development of perovskite nanocrystals.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Ag-integrated mixed metallic Co-Fe-Ni-Mn hydroxide composite as advanced electrode for high-performance hybrid supercapacitors

Anki Reddy Mule, Bhimanaboina Ramulu, Shaik Junied Arbaz, Anand Kurakula, Jae Su Yu

Summary: Direct growth of redox-active noble metals and rational design of multifunctional electrochemical active materials play crucial roles in developing novel electrode materials for energy storage devices. In this regard, silver (Ag) has attracted great attention in the design of efficient electrodes. The construction of multifaceted heterostructure cobalt-iron hydroxide (CFOH) nanowires (NWs)@nickel cobalt manganese hydroxides and/or hydrate (NCMOH) nanosheets (NSs) on the Ag-deposited nickel foam and carbon cloth (i.e., Ag/ NF and Ag/CC) substrates is reported. The as-fabricated Ag@CFOH@NCMOH/NF electrode delivered superior areal capacity value of 2081.9 μA h cm-2 at 5 mA cm-2. Moreover, as-assembled hybrid cell based on NF (HC/NF) device exhibited remarkable areal capacity value of 1.82 mA h cm-2 at 5 mA cm-2 with excellent rate capability of 74.77% even at 70 mA cm-2. Furthermore, HC/NF device achieved maximum energy and power densities of 1.39 mW h cm-2 and 42.35 mW cm-2, respectively. To verify practical applicability, both devices were also tested to serve as a self-charging station for various portable electronic devices.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Insights into ionic association boosting water oxidation activity and dynamic stability

Zanling Huang, Shuqi Zhu, Yuan Duan, Chaoran Pi, Xuming Zhang, Abebe Reda Woldu, Jing-Xin Jian, Paul K. Chu, Qing-Xiao Tong, Liangsheng Hu, Xiangdong Yao

Summary: In this study, it was found that Ni sites act as a host to attract Fe(III) to form Fe(Ni)(III) binary centers, which promote the oxygen evolution reaction (OER) activity and stability by cyclical formation of intermediates. Additionally, other ions can also catalyze the OER process on different electrodes.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Reversible Mn2+/Mn4+double-electron redox in P3-type layer-structured sodium-ion cathode

Jie Zeng, Jian Bao, Ya Zhang, Xun-Lu Li, Cui Ma, Rui-Jie Luo, Chong-Yu Du, Xuan Xu, Zhe Mei, Zhe Qian, Yong-Ning Zhou

Summary: The balance between cationic redox and oxygen redox is crucial for achieving high energy density and cycle stability in sodium batteries. This study demonstrates the reversible Mn2+/Mn4+ redox in a P3-Na0.65Li0.2Co0.05Mn0.75O2 cathode material through Co substitution, effectively suppressing the contribution of oxygen redox and improving structure stability.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

The initial stages of Li2O2 formation during oxygen reduction reaction in Li-O2 batteries: The significance of Li2O2 in charge-transfer reactions within devices

Daniela M. Josepetti, Bianca P. Sousa, Simone A. J. Rodrigues, Renato G. Freitas, Gustavo Doubek

Summary: Lithium-oxygen batteries have high energy density potential but face challenges in achieving high cyclability. This study used operando Raman experiments and electrochemical impedance spectroscopy to evaluate the initial discharge processes in porous carbon electrodes. The results indicate that the reaction occurs at the Li2O2 surface and the growth of Li2O2 forms a more compact and homogeneous structure.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Porous metal oxides in the role of electrochemical CO2 reduction reaction

Ziqi Zhang, Jinyun Xu, Yu Zhang, Liping Zhao, Ming Li, Guoqiang Zhong, Di Zhao, Minjing Li, Xudong Hu, Wenju Zhu, Chunming Zheng, Xiaohong Sun

Summary: This paper explores the challenge of increasing global CO2 emissions and highlights the role of porous metal oxide materials in electrocatalytic reduction of CO2 (CO2RR). Porous metal oxides offer high surface area and tunability for optimizing CO2RR reaction mechanisms.

JOURNAL OF ENERGY CHEMISTRY (2024)