4.6 Article

Nonlinear frequency response analysis of forced periodic operation of non-isothermal CSTR with simultaneous modulation of inlet concentration and inlet temperature

Journal

CHEMICAL ENGINEERING SCIENCE
Volume 137, Issue -, Pages 40-58

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2015.06.018

Keywords

Nonlinear dynamics; Mathematical modeling; Chemical reactors; Simulation; Non-isothermal CSTR; Two-input modulation

Funding

  1. Serbian Ministry of Science [172022, III45001]

Ask authors/readers for more resources

The nonlinear frequency response (NFR) method is applied for evaluation of possible improvement through simultaneous periodic modulation of two inputs of a non-isothermal continuously stirred tank reactor (CSTR) in which homogeneous nth order reaction A -> product(s) takes place. The two modulated inputs are the concentration of the reactant in the feed steam and the temperature of the feed stream. The cross asymmetrical second order FRF which correlates the outlet concentration with both modulated inputs is derived and analyzed. The optimal phase difference which should be used in order to maximize the conversion is determined. The method is tested on three numerical examples of non-isothermal CSTRs: (a) one which is oscillatory stable with strong resonant behavior, (b) one which is oscillatory stable with weak resonant behavior and (c) one which is nonoscillatory stable. Good agreement between the results of the approximate NFR method and the results of exact numerical integration is obtained except for the reactor with strong resonance for forcing frequencies which are close to the resonant frequency and for the reactor with weak resonant behavior for forcing frequency equal to the resonant one in case of high forcing amplitudes. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available