4.7 Article

Galaxy cluster mass estimation from stacked spectroscopic analysis

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 460, Issue 4, Pages 3900-3912

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stw1143

Keywords

methods: statistical; galaxies: clusters: general; galaxies: haloes

Funding

  1. DOE Office of Science [DE-SC0007859]
  2. National Science Foundation [NSF-AST-1211838]
  3. Direct For Mathematical & Physical Scien
  4. Division Of Astronomical Sciences [1211838] Funding Source: National Science Foundation

Ask authors/readers for more resources

We use simulated galaxy surveys to study: (i) how galaxy membership in redMaPPer clusters maps to the underlying halo population, and (ii) the accuracy of a mean dynamical cluster mass, M-sigma(lambda), derived from stacked pairwise spectroscopy of clusters with richness lambda. Using similar to 130 000 galaxy pairs patterned after the Sloan Digital Sky Survey (SDSS) redMaPPer cluster sample study of Rozo et al., we show that the pairwise velocity probability density function of central-satellite pairs with m(i) < 19 in the simulation matches the form seen in Rozo et al. Through joint membership matching, we deconstruct the main Gaussian velocity component into its halo contributions, finding that the top-ranked halo contributes similar to 60 per cent of the stacked signal. The halo mass scale inferred by applying the virial scaling of Evrard et al. to the velocity normalization matches, to within a few per cent, the log-mean halo mass derived through galaxy membership matching. We apply this approach, along with miscentring and galaxy velocity bias corrections, to estimate the log-mean matched halo mass at z = 0.2 of SDSS redMaPPer clusters. Employing the velocity bias constraints of Guo et al., we find aEuroln (M-200c)|lambda aEuro parts per thousand = ln (< M-30) + alpha(m) ln (lambda/30) with M-30 = 1.56 +/- 0.35 x 10(14) M-aS (TM) and alpha(m) = 1.31 +/- 0.06(stat) +/- 0.13(sys). Systematic uncertainty in the velocity bias of satellite galaxies overwhelmingly dominates the error budget.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available