4.7 Article

Sequential removal of cation/H+ exchangers reveals their additive role in elemental distribution, calcium depletion and anoxia tolerance

Journal

PLANT CELL AND ENVIRONMENT
Volume -, Issue -, Pages -

Publisher

WILEY
DOI: 10.1111/pce.14756

Keywords

signalling; stress; SXRF; transport; vacuole

Categories

Ask authors/readers for more resources

This study reveals that multiple H+/Cation transporters in Arabidopsis participate in high-capacity transport into the vacuole and regulate leaf elemental content. It also shows that reducing endogenous calcium levels can improve plants' tolerance to anoxia.
Multiple Arabidopsis H+/Cation exchangers (CAXs) participate in high-capacity transport into the vacuole. Previous studies have analysed single and double mutants that marginally reduced transport; however, assessing phenotypes caused by transport loss has proven enigmatic. Here, we generated quadruple mutants (cax1-4: qKO) that exhibited growth inhibition, an 85% reduction in tonoplast-localised H+/Ca transport, and enhanced tolerance to anoxic conditions compared to CAX1 mutants. Leveraging inductively coupled plasma mass spectrometry (ICP-MS) and synchrotron X-ray fluorescence (SXRF), we demonstrate CAX transporters work together to regulate leaf elemental content: ICP-MS analysis showed that the elemental concentrations in leaves strongly correlated with the number of CAX mutations; SXRF imaging showed changes in element partitioning not present in single CAX mutants and qKO had a 40% reduction in calcium (Ca) abundance. Reduced endogenous Ca may promote anoxia tolerance; wild-type plants grown in Ca-limited conditions were anoxia tolerant. Sequential reduction of CAXs increased mRNA expression and protein abundance changes associated with reactive oxygen species and stress signalling pathways. Multiple CAXs participate in postanoxia recovery as their concerted removal heightened changes in postanoxia Ca signalling. This work showcases the integrated and diverse function of H+/Cation transporters and demonstrates the ability to improve anoxia tolerance through diminishing endogenous Ca levels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available