4.6 Article

Memantine, a Low-Affinity NMDA Receptor Antagonist, Protects against Methylmercury-Induced Cytotoxicity of Rat Primary Cultured Cortical Neurons, Involvement of Ca2+ Dyshomeostasis Antagonism, and Indirect Antioxidation Effects

Journal

MOLECULAR NEUROBIOLOGY
Volume 54, Issue 7, Pages 5034-5050

Publisher

SPRINGER
DOI: 10.1007/s12035-016-0020-2

Keywords

Methylmercury; Memantine; Neurons; Ca2+ dyshomeostasis; NMDA receptors; Excitotoxicity; Oxidative stress

Categories

Funding

  1. National Natural Science Foundation of China [81172631]

Ask authors/readers for more resources

Methylmercury (MeHg) is an extremely dangerous environmental pollutant that induces severe toxic effects in the central nervous system. Neuronal damage plays critical roles mediating MeHg-induced loss of brain function and neurotoxicity. The molecular mechanisms of MeHg neurotoxicity are incompletely understood. The objective of the study is to explore mechanisms that contribute to MeHg-induced neurocyte injuries focusing on neuronal Ca2+ dyshomeostasis and alteration of N-methyl-D-aspartate receptors (NMDARs) expression, as well as oxidative stress in primary cultured cortical neurons. In addition, the neuroprotective effects of memantine against MeHg cytotoxicity were also investigated. The cortical neurons were exposed to 0, 0.01, 0.1, 1, or 2 mu M methylmercury chloride (MeHgCl) for 0.5-12 h, or pre-treated with 2.5, 5, 10, or 20 mu M memantine for 0.5-6 h, respectively; cell viability and LDH release were then quantified. For further experiments, 2.5, 5, and 10 mu M of memantine pre-treatment for 3 h followed by 1 mu M MeHgCl for 6 h were performed for evaluation of neuronal injuries, specifically addressing apoptosis; intracellular free Ca2+ concentrations; ATPase activities; calpain activities; expressions of NMDAR subunits (NR1, NR2A, NR2B); NPSH levels; and ROS formation. Exposure of MeHgCl resulted in toxicity of cortical neurons, which were shown as a loss of cell viability, high levels of LDH release, morphological changes, and cell apoptosis. Moreover, intracellular Ca2+ dyshomeostasis, ATPase activities inhibition, calpain activities, and NMDARs expression alteration were observed with 1 mu M MeHgCl administration. Last but not least, NPSH depletion and reactive oxygen species (ROS) overproduction showed an obvious oxidative stress in neurons. However, memantine pre-treatment dose-dependently antagonized MeHg-induced neuronal toxic effects, apoptosis, Ca2+ dyshomeostasis, NMDARs expression alteration, and oxidative stress. In conclusion, the cytoprotective effects of memantine against MeHg appeared to be mediated not only via its NMDAR binding properties and Ca2+ homeostasis maintenance but also by indirect antioxidation effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available