4.6 Article

Methylphenidate Decreases ATP Levels and Impairs Glutamate Uptake and Na+,K+-ATPase Activity in Juvenile Rat Hippocampus

Journal

MOLECULAR NEUROBIOLOGY
Volume 54, Issue 10, Pages 7796-7807

Publisher

SPRINGER
DOI: 10.1007/s12035-016-0289-1

Keywords

Methylphenidate; Amino acid levels; Glutamatergic homeostasis; Na+,K+-ATPase; ATP levels; Mitochondrial function

Categories

Funding

  1. Fundacao de Amparo a Pesquisa do Estado do Rio Grande do Sul (FAPERGS)
  2. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq-Brazil)

Ask authors/readers for more resources

The study of the long-term neurological consequences of early exposure with methylphenidate (MPH) is very important since this psychostimulant has been widely misused by children and adolescents who do not meet full diagnostic criteria for ADHD. The aim of this study was to examine the effect of early chronic exposure with MPH on amino acids profile, glutamatergic and Na+,K+-ATPase homeostasis, as well as redox and energy status in the hippocampus of juvenile rats. Wistar male rats received intraperitoneal injections of MPH (2.0 mg/kg) or saline solution (controls), once a day, from the 15th to the 45th day of age. Results showed that MPH altered amino acid profile in the hippocampus, decreasing glutamine levels. Glutamate uptake and Na+,K+-ATPase activity were decreased after chronic MPH exposure in the hippocampus of rats. No changes were observed in the immunocontents of glutamate transporters (GLAST and GLT-1), and catalytic subunits of Na+,K+-ATPase (alpha(1), alpha(2), and alpha(3)), as well as redox status. Moreover, MPH provoked a decrease in ATP levels in the hippocampus of chronically exposed rats, while citrate synthase, succinate dehydrogenase, respiratory chain complexes activities (II, II-III, and IV), as well as mitochondrial mass and mitochondrial membrane potential were not altered. Taken together, our results suggest that chronic MPH exposure at early age impairs glutamate uptake and Na+,K+-ATPase activity probably by decreasing in ATP levels observed in rat hippocampus.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available