4.5 Article

Influence of the availability of iron during hypoxia on the genes associated with apoptotic activity and local iron metabolism in rat H9C2 cardiomyocytes and L6G8C5 skeletal myocytes

Journal

MOLECULAR MEDICINE REPORTS
Volume 14, Issue 4, Pages 3969-3977

Publisher

SPANDIDOS PUBL LTD
DOI: 10.3892/mmr.2016.5705

Keywords

iron deficiency; iron excess; hypoxia; apoptotic activity; iron metabolism genes; cardiomyocyte; skeletal myocyte

Funding

  1. Polish Ministry of Science and Higher Education [UMO-2012/05/E/NZ5/00590]

Ask authors/readers for more resources

The differential availability of iron during hypoxia is presumed to affect the functioning of cardiac and skeletal myocytes. Rat H9C2 cardiomyocytes and L6G8C5 myocytes were cultured for 48 h in normoxic or hypoxic conditions at the optimal, reduced or increased iron concentration. The mRNA expression levels of markers of apoptosis [B-cell lymphoma-2 (Bcl2; inhibition) and Bcl-2-activated X protein (Bax; induction)], atrophy (Atrogin), glycolysis (pyruvate kinase 2; PKM2) and iron metabolism [transferrin receptor 1 (TfR1; iron importer), ferroportin 1 (FPN1; iron exporter), ferritin heavy chain (FTH; iron storage protein) and hepcidin (HAMP; iron regulator)] were determined using reverse transcription-quantitative polymerase chain reaction, and cell viability was measured using an tetrazolium reduction assay. Cardiomyocytes and myocytes, when exposed to hypoxia, demonstrated an increased Bax/Bcl-2 gene expression ratio (P<0.05). Additional deferoxamine (DFO) treatment resulted in further increases in Bax/Bcl-2 in each cell type (P<0.001 each) and this was associated with the 15% loss in viability. The analogous alterations were observed in both cell types upon ammonium ferric citrate (AFC) treatment during hypoxia; however, the increased Bax/Bcl-2 ratio and associated viability loss was lower compared with that in case of DFO treatment (P<0.05 each). Under hypoxic conditions, myocytes demonstrated an increased expression of PKM2 (P<0.01). Additional DFO treatment caused an increase in the mRNA expression levels of PKM2 and Atrogin-1 (P<0.001 and P<0.05, respectively), whereas AFC treatment caused an increased mRNA expression of PKM2 (P<0.01) and accompanied decreased mRNA expression of Atrogin-1 (P<0.05). The expression augmentation of PKM2 during hypoxia was greater upon low iron compared with that of ferric salt treatment (P<0.01). Both cell types upon DFO during hypoxia demonstrated the increased expression of TfR1 and HAMP (all P<0.05), which was associated with the increased Bax/Bcl-2 ratio (all R>0.6 and P<0.05). In conclusion, during hypoxia iron deficiency impairs the viability of cardiomyocytes and myocytes more severely compared with iron excess. In myocytes, during hypoxia iron may act in a protective manner, since the level of atrophy is decreased in the iron-salt-treated cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available