4.5 Article

Pervaporation separation of benzene/cyclohexane through AAOM-ionic liquids/polyurethane membranes

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cep.2015.01.006

Keywords

Pervaporation; Supported ionic liquids; Polyurethane; Benzene; Cyclohexane

Funding

  1. National Nature Foundation of China [20866007]

Ask authors/readers for more resources

Supported ionic liquids/polyurethane (PU) membranes were prepared by immobilizing ionic liquids on a porous anodic aluminum oxide membrane (MOM) support that was coated on one side with polyurethane (PU). The microstructure of all membranes was characterized using scanning electron microscopy (SEM). The pervaporation separation performance of the supported ionic liquids/ polyurethane membranes was investigated for benzene/cyclohexane (Bz/Cy) mixtures. The SEM results demonstrated that the porous surface of the AAOM support was sealed by the dense polyurethane membrane and the pores of the MOM support were impregnate with ionic liquids. The ionic liquids filling in the AAOM support enhanced the separation selectivity of Bz/Cy. The separation factor of Bz to Cy increased from 5 to 34.4 and the largest PSI of AAOM-[C(4)mim]PF6/PU membrane reached 452.54 g m(-2) h(-1) at 55 degrees C for a 50 wt.% Bz/Cy mixture. Because the polyurethane prevented the leakage of ionic liquids filled in the MOM support, the supported ionic liquids/polyurethane membranes exhibited excellent stability. (C) 2015 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Energy & Fuels

Supercritical deposition of mono- and bimetallic Pd and Pt on TiO2 coated additively manufactured substrates for the application in the direct synthesis of hydrogen peroxide

Laura L. Trinkies, Marlene Crone, Michael Tuerk, Manfred Kraut, Roland Dittmeyer

Summary: In this study, mono- and bimetallic Pd and Pt catalysts were deposited via supercritical fluid reactive deposition (SFRD) on TiO2 coated additively manufactured substrates. The focus of this work was to evaluate the suitability of these catalysts for the direct synthesis of H2O2 in the liquid phase. The results showed that all catalysts exhibited high activity and productivity, with PdPt bimetallic catalysts showing the highest productivity and an increase in Pd loading leading to a decrease in productivity. Comparison with literature data demonstrated the high suitability of the SFRD method for the proposed application, with the added benefits of simplicity and environmental friendliness in catalyst production.

CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION (2024)

Article Energy & Fuels

On the design of a hydrogen micro-rectangular combustor for portable thermoelectric generators

Xiongbao Hu, Zuguo Shen, Yu Wang

Summary: It is impossible to control the outer wall temperature of the micro-combustor below the maximum allowable temperature of commercial thermoelectric generators simply through increasing the equivalent heat transfer coefficient. Three simple strategies were developed to improve temperature uniformity, yet none of them could ensure full temperature control.

CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION (2024)