4.5 Review

Novel Drugs Targeting the c-Ring of the F1FO-ATP Synthase

Journal

MINI-REVIEWS IN MEDICINAL CHEMISTRY
Volume 16, Issue 10, Pages 815-824

Publisher

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/1389557516666160211120955

Keywords

ATP synthase; c-ring; diarylquinolines; drug target; enzyme inhibition; macrolides; organotins

Funding

  1. University of Bologna, Fundamental and Oriented Research (RFO) grant

Ask authors/readers for more resources

Increasing evidence highlights the role of the ATP synthase/hydrolase, also known as F1FO-complex, as key molecular and enzymatic switch between cell life and death, thus increasing the enzyme attractiveness as drug target in pharmacology. Being inhibition of ATP production usually linked to antiproliferative properties, drugs targeting the enzyme complex have been mainly considered to fight pathogen parasites and cancer. In recent years, a number of natural macrolides, produced by bacterial fermentation and structurally related to the classical enzyme inhibitor oligomycin, have been shown to bind to the membrane-embedded F-O sector and to inhibit the enzyme complex by an oligomycin-like mechanism, namely by interacting with the c-ring. Other than natural macrolide antibiotics, which display variegated inhibition power on different F1FO-complexes, synthetic compounds from the diarylquinoline and organotin families also target the c-ring and strongly inhibit the enzyme. Bioinformatic insights address drug design to target F-O subunits. Additionally, the possible modulation of the drug inhibition power, by amino acid substitutions or post-translational modifications of c-subunits, adds further interest to the target. The present survey on compounds targeting the c-ring and bi-directionally blocking the transmembrane proton flux which drives ATP synthesis/hydrolysis, discloses new therapeutic options to fight cancer and infections sustained by therapeutically recalcitrant microorganisms. Additionally, c-ring targeting compounds may constitute new tools to eradicate undesired biofilms and to address at the molecular level the therapy of mammalian diseases linked to mitochondrial dysfunctions. In summary, studies on the only partially known molecular interactions within the c-ring of the F1FO-complex may renew hope to counteract mammalian diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available