4.5 Article

Viscosity-difference-induced asymmetric selective focusing for large stroke particle separation

Journal

MICROFLUIDICS AND NANOFLUIDICS
Volume 20, Issue 9, Pages -

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10404-016-1791-5

Keywords

-

Funding

  1. Natural Science Foundation of Hubei Province of China [2015CFA110]
  2. National Natural Science Foundation of China [51575216]
  3. Chinese central government through its Thousand Youth Talents program

Ask authors/readers for more resources

We developed a new approach for particle separation by introducing viscosity difference of the sheath flows to form an asymmetric focusing of sample particle flow. This approach relies on the high-velocity gradient in the asymmetric focusing of the particle flow to generate a lift force, which plays a dominated role in the particle separation. The larger particles migrate away from the original streamline to the side of the higher relative velocity, while the smaller particles remain close to the streamline. Under high-viscosity (glycerol-water solution) and low-viscosity (PBS) sheath flows, a significant large stroke separation between the smaller (1.0 mu m) and larger (9.9 mu m) particles was achieved in a sample microfluidic device. We demonstrate that the flow rate and the viscosity difference of the sheath flows have an impact on the interval distance of the particle separation that affects the collected purity and on the focusing distribution of the smaller particles that affects the collected concentration. The interval distance of 293 mu m (relative to the channel width: 0.281) and the focusing distribution of 112 mu m (relative to the channel width: 0.107) were obtained in the 1042-mu m-width separation area of the device. This separation method proposed in our work can potentially be applied to biological and medical applications due to the wide interval distance and the narrow focusing distribution of the particle separation, by easy manufacturing in a simple device.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available