4.1 Article

Design of Low-Cost Full W-Band 8th Harmonic Mixers for Frequency Extension of Spectrum Analyzer

Journal

IET CIRCUITS DEVICES & SYSTEMS
Volume 2023, Issue -, Pages -

Publisher

WILEY-HINDAWI
DOI: 10.1049/2023/8196039

Keywords

-

Ask authors/readers for more resources

This article introduces the application of high-order harmonic mixers in the field of spectrum analyzers, and proposes two low-cost designs of 8th harmonic mixers. These mixers are designed with simple and effective methods, and are compatible with existing frequency extension options.
High-order harmonic mixer is popular for frequency extension of spectrum analyzer (SA) from microwave to millimeter-wave or even terahertz band. The manufactures of SA usually offer expensive harmonic mixers where frequency extension is needed. In this work, low-cost designs of 2-port and 3-port W-band 8th harmonic mixers covering 75-110 GHz are proposed, and design method of two port mixer without frequency diplexer to separate local oscillator (LO) and intermediate frequency (IF) signals are first presented. These two kinds of mixers are compatible with almost all the current SAs with frequency extension options, which provides LO for the external harmonic mixer. The mixers are designed with planar microstrip lines and antiparallel Schottky diodes. The circuit of 2-port mixer includes the input broadband bandpass filter, diodes, output lowpass filter, and matching circuits. As for 3-port mixer, only an extra diplexer is needed to separate the IF signal and LO signal. The diplexer is composed of a planar semi-lumped lowpass and a highpass filter. The planar circuits are easily fabricated with low-cost print circuit board process on polytetrafluoroethylene substrate. The measured conversion loss of 2-port 8th harmonic mixer is from 20 to 26 dB, and 23 to 28 dB for 3-port mixer at full W-band. The good measured results indicate the proposed mixers are simple and effective.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available