4.1 Article

A study of the observed shift in the peak position of olivine Raman spectra as a result of shock induced by hypervelocity impacts

Journal

METEORITICS & PLANETARY SCIENCE
Volume 51, Issue 7, Pages 1289-1300

Publisher

WILEY
DOI: 10.1111/maps.12660

Keywords

-

Funding

  1. STFC (UK)
  2. STFC [ST/N000854/1] Funding Source: UKRI
  3. Science and Technology Facilities Council [ST/N000854/1] Funding Source: researchfish

Ask authors/readers for more resources

Kuebler etal. (2006) identified variations in olivine Raman spectra based on the composition of individual olivine grains, leading to identification of olivine composition from Raman spectra alone. However, shock on a crystal lattice has since been shown to result in a structural change to the original material, which produces a shift in the Raman spectra of olivine grains compared with the original unshocked olivine (Foster etal. 2013). This suggests that the use of the compositional calculations from the Raman spectra, reported in Kuebler etal. (2006), may provide an incorrect compositional value for material that has experienced shock. Here, we have investigated the effect of impact speed (and hence peak shock pressure) on the shift in the Raman spectra for San Carlos olivine (Fo(91)) impacting Al foil. Powdered San Carlos olivine (grain size 1-10m) was fired at a range of impact speeds from 0.6 to 6.1kms(-1) (peak shock pressures 5-86 GPa) at Al foil to simulate capture over a wide range of peak shock pressures. A permanent change in the Raman spectra was found to be observed only for impact speeds greater than similar to 5kms(-1). The process that causes the shift is most likely linked to an increase in the peak pressure produced by the impact, but only after a minimum shock pressure associated with the speed at which the effect is first observed (here 65-86 GPa). At speeds around 6kms(-1) (peak shock pressures similar to 86 GPa), the shift in Raman peak positions is in a similar direction (red shift) to that observed by Foster etal. (2013) but of twice the magnitude.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available