4.6 Article

A framework based on nonlinear FE simulations and artificial neural networks for estimating the thermal profile in arc welding

Journal

FINITE ELEMENTS IN ANALYSIS AND DESIGN
Volume 226, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.finel.2023.104024

Keywords

Arc-welding; Nonlinear thermo-physics; Finite element analysis; Artificial neural networks; Time-temperature profile

Ask authors/readers for more resources

A novel strategy based on nonlinear thermal analysis using finite element simulations and artificial neural networks has been developed to predict the time-temperature distributions in arc welding. The highly nonlinear and transient thermal finite element methodology of arc welding process is investigated through different numerical features, and detailed algorithms are provided for an insightful understanding. Artificial neural networks have been developed through training and testing of supervised data sets, enabling accurate predictions of the nonlinear thermal behavior of welded components.
In this paper, a novel strategy based on nonlinear thermal analysis has been developed using finite element simulations and artificial neural networks in order to predict the time-temperature distributions in arc welding process. The highly nonlinear and transient thermal finite element methodology pertaining to simulations of arc welding process is investigated through various combinations of numerical features. Detailed algorithms are provided for an insightful understanding of the nonlinear computations associated with the physics of arc welding. Subsequently, data-sets have been generated from the simulations with inputs of various geometrical and weldprocess parameters. The output data describes the non-uniform and nonlinear variation of temperatures with heating and cooling of arc welds. Artificial neural networks have been developed through training and testing of the supervised data-sets. The nonlinear thermal profile is then predicted by the simulation-based neural networks for two sample weld specimens with new process parameters. The results show an excellent agreement with experimentally measured temperatures during welding. The present work provides a robust and effective methodology to obtain fast estimations of nonlinear thermal behaviour during arc welding of the components.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Mathematics, Applied

Fatigue response of open hole plates: A finite element simulation investigating the influence of dynamic and static cold expansion processes

Guo Zheng, Zengqiang Cao, Yuehaoxuan Wang, Reza Talemi

Summary: This study introduces two novel methods for predicting the fatigue response of Dynamic Cold Expansion (DCE) and Static Cold Expansion (SCE) open-hole plates. The accuracy of the prediction is enhanced by considering stress distributions and improving existing methods. The study also discusses the mechanisms behind fatigue life enhancement and fatigue crack propagation modes in cold expansion specimens.

FINITE ELEMENTS IN ANALYSIS AND DESIGN (2024)

Article Mathematics, Applied

Model development for numerical analysis of the bonding strength for friction welded lightweight structures

Eric Heppner, Tomohiro Sasaki, Frank Trommer, Elmar Woschke

Summary: This paper presents a modeling approach for estimating the bonding strength of friction-welded lightweight structures. Through experiments and simulations, a method for evaluating the bonding strength of friction-welded lightweight structures is developed, and the plausibility and applicability of the model are discussed.

FINITE ELEMENTS IN ANALYSIS AND DESIGN (2024)

Article Mathematics, Applied

Nonlinear model order reduction for problems with microstructure using mesh informed neural networks

Piermario Vitullo, Alessio Colombo, Nicola Rares Franco, Andrea Manzoni, Paolo Zunino

Summary: Many applications in computational physics involve approximating problems with microstructure, characterized by multiple spatial scales in their data. However, these numerical solutions are often computationally expensive due to the need to capture fine details at small scales. Traditional projection based reduced order models (ROMs) fail to resolve these issues, even for second-order elliptic PDEs commonly found in engineering applications. To address this, we propose an alternative nonintrusive strategy to build a ROM, that combines classical proper orthogonal decomposition (POD) with a suitable neural network (NN) model to account for the small scales.

FINITE ELEMENTS IN ANALYSIS AND DESIGN (2024)

Article Mathematics, Applied

A dynamic description of the smoothing gradient damage model for quasi-brittle failure

Chanh Dinh Vuong, Xiaofei Hu, Tinh Quoc Bui

Summary: In this paper, we present a dynamic description of the smoothing gradient-enhanced damage model for the simulation of quasi-brittle failure localization under time-dependent loading conditions. We introduce two efficient rate-dependent damage laws and various equivalent strain formulations to analyze the complicated stress states and inertia effects of the dynamic regime, enhancing the capability of the adopted approach in modeling dynamic fracture and branching.

FINITE ELEMENTS IN ANALYSIS AND DESIGN (2024)

Article Mathematics, Applied

Multi-scale modelling and analysis of the behaviour of PC/ABS blends with emphasis on interfacial/bulk damage

Alexandre D. C. Amaro, A. Francisca Carvalho Alves, F. M. Andrade Pires

Summary: This study focuses on analyzing various deformation mechanisms that affect the behavior of PC/ABS blends using computational homogenization. By establishing a representative microstructural volume element, defining the constitutive description of the material phases, and modeling the interfaces and matrix damage, accurate predictions can be achieved. The findings have important implications for broader applications beyond PC/ABS blends.

FINITE ELEMENTS IN ANALYSIS AND DESIGN (2024)

Article Mathematics, Applied

Bending and torsion induced stresses in cylindrically orthotropic and inhomogeneous timber beams

David Hoffmeyer, A. R. Damanpack

Summary: This paper introduces a method for determining all six stress components for a cantilever-type beam that is subjected to concentrated end loads. The method considers an inhomogeneous cross-section and employs cylindrically orthotropic material properties. The efficacy of the method is validated by numerical examples and a benchmark example, and the analysis on a real sawn timber cross-section reveals significant disparities in the maximum stresses compared to conventional engineering approaches.

FINITE ELEMENTS IN ANALYSIS AND DESIGN (2024)

Article Mathematics, Applied

Structures with varying discontinuities and curvatures: A dynamic analysis approach by the p-version finite element method

Vladimir Stojanovic, Jian Deng, Dunja Milic, Marko D. Petkovic

Summary: The present paper investigates the dynamic analysis of a coupled Timoshenko beam-beam or beam-arch mechanical system with geometric nonlinearities. A modified p-version finite element method is developed for the vibrations of a shear deformable coupled beam system with a discontinuity in an elastic layer. The main contribution of this work is the discovery of coupled effects and phenomena in the simultaneous vibration analysis of varying discontinuity and varying curvature of the newly modelled coupled mechanical system. The analysis results are valuable and have broader applications in the field of solids and structures.

FINITE ELEMENTS IN ANALYSIS AND DESIGN (2024)

Article Mathematics, Applied

Mesh coarsening using the phantom-node method in the phase field model

Gihwan Kim, Phill-Seung Lee

Summary: The phantom-node method is applied in the phase field model for mesh coarsening to improve computational efficiency. By recovering the fine mesh in the crack path domain into a coarse mesh, this method significantly reduces the number of degrees of freedom involved in the computation.

FINITE ELEMENTS IN ANALYSIS AND DESIGN (2024)

Article Mathematics, Applied

An unsupervised machine learning approach to reduce nonlinear FE2 multiscale calculations using macro clustering

Souhail Chaouch, Julien Yvonnet

Summary: In this study, an unsupervised machine learning-based clustering approach is developed to reduce the computational cost of nonlinear multiscale methods. The approach clusters macro Gauss points based on their mechanical states, reducing the problem from macro scale to micro scale. A single micro nonlinear Representative Volume Element (RVE) calculation is performed for each cluster, using a linear approximation of the macro stress. Anelastic macro strains are used to handle internal variables. The technique is applied to nonlinear hyperelastic, viscoelastic and elastoplastic composites.

FINITE ELEMENTS IN ANALYSIS AND DESIGN (2024)

Article Mathematics, Applied

Integrated BIM-based modeling and simulation of segmental tunnel lining by means of isogeometric analysis

Hoang-Giang Bui, Jelena Ninic, Christian Koch, Klaus Hackl, Guenther Meschke

Summary: With the increasing demand for underground transport infrastructures, it is crucial to develop methods and tools that efficiently explore design options and minimize risks to the environment. This study proposes a BIM-based approach that connects user-friendly software with effective simulation tools to analyze complex tunnel structures. The results show that modeling efforts and computational time can be significantly reduced while maintaining high accuracy.

FINITE ELEMENTS IN ANALYSIS AND DESIGN (2024)

Article Mathematics, Applied

Achieving high efficiency in reduced order modeling for large scale polycrystal plasticity simulations

Aslan Nasirov, Xiaoyu Zhang, David Wagner, Saikumar R. Yeratapally, Caglar Oskay

Summary: This manuscript presents an efficient model construction strategy for the eigenstrain homogenization method (EHM) for the reduced order models of the nonlinear response of heterogeneous microstructures. The strategy relies on a parallel, element-by-element, conjugate gradient solver, achieving near linear scaling with respect to the number of degrees of freedom used to resolve the microstructure. The linear scaling in the number of pre-analyses required to construct the reduced order model (ROM) follows from the EHM formulation. The developed framework has been verified using an additively manufactured polycrystalline microstructure of Inconel 625.

FINITE ELEMENTS IN ANALYSIS AND DESIGN (2024)

Article Mathematics, Applied

Epistemic modeling uncertainty of rapid neural network ensembles for adaptive learning

Atticus Beachy, Harok Bae, Jose A. Camberos, Ramana V. Grandhi

Summary: Emulator embedded neural networks leverage multi-fidelity data sources for efficient design exploration of aerospace engineering systems. However, training the ensemble models can be costly and pose computational challenges. This work presents a new type of emulator embedded neural network using the rapid neural network paradigm, which trains near-instantaneously without loss of prediction accuracy.

FINITE ELEMENTS IN ANALYSIS AND DESIGN (2024)

Article Mathematics, Applied

A comparison of data-driven reduced order models for the simulation of mesoscale atmospheric flow

Arash Hajisharifi, Michele Girfoglio, Annalisa Quaini, Gianluigi Rozza

Summary: This paper introduces three reduced order models for reducing computational time in atmospheric flow simulation while preserving accuracy. Among them, the PODI method, which uses interpolation with radial basis functions, maintains accuracy at any time interval.

FINITE ELEMENTS IN ANALYSIS AND DESIGN (2024)

Article Mathematics, Applied

Empowering PGD-based parametric analysis with Optimal Transport

D. Munoz, S. Torregrosa, O. Allix, F. Chinesta

Summary: The Proper Generalized Decomposition (PGD) is a Model Order Reduction framework used for parametric analysis of physical problems. It allows for offline computation and real-time simulation in various situations. However, its efficiency may decrease when the domain itself is considered as a parameter. Optimal transport techniques have shown exceptional performance in interpolating fields over geometric domains with varying shapes. Therefore, combining these two techniques is a natural choice. PGD handles the parametric solution while the optimal transport-based methodology transports the solution for a family of domains defined by geometric parameters.

FINITE ELEMENTS IN ANALYSIS AND DESIGN (2024)

Article Mathematics, Applied

Diffused interface Crystal Plasticity Finite Element Method: Biased mesh generation and accuracy

Jothi Mani Thondiraj, Akhshaya Paranikumar, Devesh Tiwari, Daniel Paquet, Pritam Chakraborty

Summary: This study develops a diffused interface CPFEM framework, which reduces computational cost by using biased mesh and provides accurate results using non-conformal elements in the mesh size transiting regions. The accuracy of the framework is confirmed through comparisons with sharp and stepped interface results.

FINITE ELEMENTS IN ANALYSIS AND DESIGN (2024)