4.3 Article

The influence of Leucidal - eco-preservative from radish - on model lipid membranes and selected pathogenic bacteria

Journal

CHEMISTRY AND PHYSICS OF LIPIDS
Volume 256, Issue -, Pages -

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.chemphyslip.2023.105338

Keywords

Ecological preservatives; Model bacteria membrane; Lipid monolayer; in vitro tests

Ask authors/readers for more resources

This study investigated the effect of a natural preservative, Leucidal, on bacteria cells and model bacteria membranes. The results showed that Leucidal decreased the packing of the membranes and had a stronger affinity for E. coli membranes. However, in vitro tests demonstrated that Leucidal had a stronger inhibitory effect against S. aureus bacteria.
In this work the effect of Leucidal -a natural preservative from radish dedicated to be used in cosmetics -on bacteria cells and model bacteria membranes was investigated. To get insight into the mechanism of action of this formulation the lipid Langmuir monolayers imitating Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) membranes were prepared. Then, the influence of Leucidal on model systems was investigated by means of the surface pressure/area measurements, penetration studies and Brewster Angle Microscopy (BAM) visualization. Similar experiments were done also for one component monolayers formed from the model membrane lipids. The in vitro tests were done on five different bacteria species (E. coli, Enterococcus faecalis, S. aureus, Salmonella enterica, Pseudomonas aeruginosa). Leucidal was found to decrease packing of the monolayers, however, it was excluded from the films at higher concentrations. Model membrane experiments evidenced also a stronger affinity of the components of this eco-preservative to E. coli vs S. aureus membrane. Among one component films, those formed from phosphatidylglycerols and cardiolipins were more sensitive to the presence of Leucidal. However, in vitro tests evidenced that Leucidal exerts stronger inhibitory effect against S. aureus bacteria as compared to E. coli strain. These findings were discussed from the point of view of the role of Leucidal components and the lipid membrane properties in the membrane -based mechanism of action of this preservative. The results allow one to suggest that the membrane may not be the main site of action of Leucidal on bacteria. Moreover, since high concentration of the tested preparation exerted antibacterial activity in relation to all tested bacteria, a low selectivity of Leucidal can be postulated, which may be problematic from the point of view of its effect on the skin microbiome.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Biochemistry & Molecular Biology

Elucidating the functional role of human ABHD16B lipase in regulating triacylglycerol mobilization and membrane lipid synthesis in Saccharomyces cerevisiae

Raja Narayanasamy, Dandamudi Usharani, Ram Rajasekharan

Summary: This study investigated the role of ABHD16B in lipid metabolism. The overexpression of ABHD16B was found to decrease cellular triacylglycerol levels and increase phospholipid synthesis in yeast cells. Additionally, ABHD16B overexpression led to a reduction in lipid droplets and significant modifications in fatty acid composition. These findings highlight the importance of ABHD16B in lipid homeostasis and provide insights into its regulatory function in cellular lipid metabolism.

CHEMISTRY AND PHYSICS OF LIPIDS (2024)