4.7 Article

Palmelloid-like phenotype in the alga Raphidocelis subcapitata exposed to pollutants: A generalized adaptive strategy to stress or a specific cellular response?

Journal

AQUATIC TOXICOLOGY
Volume 264, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.aquatox.2023.106732

Keywords

Asexual reproduction; Erythromycin; Heavy metals; Metolachlor; Palmelloid phenotype; Stress response

Ask authors/readers for more resources

This study focuses on the formation of palmelloid-like phenotype in the freshwater alga Raphidocelis subcapitata exposed to adverse conditions generated by organic or inorganic pollutants. The results indicate that the formation of palmelloid-like phenotype is dependent on the type, concentration, and exposure time of the pollutants, and the phenotype can be reversed when transferred to a pollutant-free medium.
This work focuses on the formation of palmelloid-like phenotype in the freshwater alga Raphidocelis subcapitata (formerly known as Pseudokirchneriella subcapitata and Selenastrum capricornutum), when exposed to adverse conditions generated by the presence of organic [the antibiotic erythromycin (ERY) and the herbicide metolachlor (MET)] or inorganic [the heavy metals, cadmium (Cd) and zinc (Zn)] pollutants, at environmentally relevant concentrations. This alga in absence of stress or when exposed to ERY or Zn, up to 200 mu g/L, essentially showed a single-nucleus state, although algal growth was reduced or stopped. R. subcapitata switched to a multinucleated state (palmelloid-like morphology) and accumulated energy-reserve compounds (neutral lipids) when stressed by 100-200 mu g/L MET or 200 mu g/L Cd; at these concentrations of pollutants, growth was arrested, however, the majority of the algal population (>= 83 %) was alive. The formation of palmelloid-like phenotype, at sub-lethal concentrations of pollutants, was dependent on the pollutant, its concentration and exposure time. The multinucleated structure is a transitory phenotype since R. subcapitata population was able to revert to a single nucleus state, with normal cell size, within 24-96 h (depending on the impact of the toxic in the alga), after being transferred to fresh OECD medium, without pollutants. The obtained results indicate that the formation of a palmelloid-like phenotype in R. subcapitata is dependent on the mode of action of toxics and their concentration, not constituting a generalized defense mechanism against stress. The observations here shown contribute to understanding the different strategies used by the unicellular alga R. subcapitata to cope with severe stress imposed by organic and inorganic pollutants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available