4.3 Article

Effects of cyclic voltammetric scan rates, scan time, temperatures and carbon addition on sulphation of Pb disc electrodes in aqueous H2SO4

Journal

MATERIALS TECHNOLOGY
Volume 35, Issue 3, Pages 135-140

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/10667857.2015.1133157

Keywords

Lead-acid battery; sulphation; lead disk electrode; lead sulphate; cyclic voltammetry

Ask authors/readers for more resources

Herein, we aim to specifying effects of cyclic voltammetric scan rates, scan time, temperatures and carbon addition on electrochemical sulphation of lead disk electrodes. Electrochemical transformation between solid Pb and solid PbSO4 was investigated by cyclic voltammetries (CVs) of Pb disk electrodes in aqueous H2SO4, in line with the morphology change of electrodes before and after CV polarizations. Too rapid or slow scan rates tend to cause more irreversible sulphation. Long-duration cycling inevitably causes loss of active layer on the electrode surface and incurs more irreversible sulphation. Sulphation becomes more efficient and reversible at elevated temperature. Reversibility of sulphation of lead gets enhanced with the formation of more uniform and less crystalline particles. The irreversible sulphation became less with the addition of carbons (CNT or AB) in the electrolyte, due to lower polarizations upon carbon addition. The protocol of carbon addition is more effective at initial stage of cycling and becomes less effective at later stages. It is acknowledged that the improvement on long-term cycling remains a challenge, yet, which deserves further study.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available