3.8 Article

Dosimetric Analysis of Intra-Fraction Motion Detected by Surface-Guided Radiation Therapy During Linac Stereotactic Radiosurgery

Journal

ADVANCES IN RADIATION ONCOLOGY
Volume 8, Issue 3, Pages -

Publisher

ELSEVIER INC
DOI: 10.1016/j.adro.2022.101151

Keywords

-

Ask authors/readers for more resources

This study aimed to investigate the dosimetric consequences of uncorrected intrafraction patient motion detected during frameless linac-based SRS. The results showed that if uncorrected, the patient motion detected by SGRT could result in dose reduction and increased dose to the normal brain.
Purpose: Stereotactic radiosurgery (SRS) immobilization with an open face mask is more comfortable and less invasive than frame based, but concerns about intrafraction motion must be addressed. Surface-guided radiation therapy (SGRT) is an attractive option for intrafraction patient monitoring because it is continuous, has submillimeter accuracy, and uses no ionizing radiation. The purpose of this study was to investigate the dosimetric consequences of uncorrected intrafraction patient motion detected during frameless linac-based SRS.Methods and Materials: Fifty-five SRS patients were monitored during treatment using SGRT between January 1, 2017, and September 30, 2020. If SGRT detected motion >1 mm, imaging was repeated and the necessary shifts were made before continuing treatment. For the 25 patients with intrafraction 3-dimensional vector shifts of & GE;1 mm, we moved the isocenter in the planning system using the translational shifts from the repeat imaging and recalculated the plans to determine the dosimetric effect of the shifts. Planning target volume (PTV) coverage, minimum gross tumor volume (GTV) dose (relative and absolute), and normal brain V12 were evaluated. Wilcoxon signed rank tests were used to compare planned and simulated dosimetric parameters and median 2 sample tests were used to investigate these differences between cone and multileaf collimator (MLC) plans. Results: For simulated plans, V12 increased by a median of 0.01 cc (P = .006) and relative GTV minimum dose and PTV coverage decreased by a median of 15.8% (P < .001) and 10.2 % (P < .001), respectively. Absolute minimum GTV dose was found to be significantly lower in the simulated plans (P < .001). PTV coverage decreased more for simulated cone plans than for simulated MLC plans (11.6% vs 4.7%, P = .011) but median V12 differences were found to be significantly larger for MLC plans (-0.34 cc vs-0.01 cc, P = .011). Differences in GTV minimum dose between cone and MLC plans were not statistically significant.Conclusions: SGRT detected clinically meaningful intrafraction motion during frameless SRS, which could lead to large underdoses and increased normal brain dose if uncorrected.& COPY; 2023 The Authors. Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available