4.6 Article

Structural, magneto-optical properties and cation distribution of SrBixLaxYxFe12-3xO19 (0.0 ≤ x ≤ 0.33) hexaferrites

Journal

MATERIALS RESEARCH BULLETIN
Volume 80, Issue -, Pages 263-272

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.materresbull.2016.03.028

Keywords

Magnetic materials; Chemical synthesis; Mossbauer spectroscopy; Magnetic properties; Optical properties

Ask authors/readers for more resources

SrBixLaxYxFe12-3xO19 (0.0 <= x <= 0.33) hexaferrites were produced via sol-gel auto combustion. XRD patterns show that all the samples are single-phase M-type strontium hexaferrite (SrM). The magnetic hysteresis (sigma-H) loops revealed the ferromagnetic nature of nanoparticles (NPs). The coercive field decreases from 4740 Oe to 2720 Oe with increasing ion content. In particular, SrBixLaxYxFe12-3xO19 NPs with x=0.0, 0.1, 0.2 have suitable magnetic characteristics (sigma(s) = 62.03-64.72 emu/g and H-c = 3105-4740 Oe) for magnetic recording. The intrinsic coercivity (H-ci) above 15000 Oe reveals that all samples are magnetically hard materials. Tauc plots were used to specify the direct optical energy band gap (E-g) of NPs. The E-g values are between 1.76 eV and 1.85 eV. Fe-57 Mossbauer spectroscopy data, the variation in line width, isomer shift, quadrupole splitting, relative area and hyperfine magnetic field values on Bi3+ La3+ and Y3+ substitutions have been determined. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Materials Science, Ceramics

(BaTiO3)1-x + (Co0.5Ni0.5Nb0.06Fe1.94O4)x nanocomposites: Structure, morphology, magnetic and dielectric properties

Yassine Slimani, Sagar E. Shirsath, Essia Hannachi, Munirah A. Almessiere, Moustafa M. Aouna, Nouf E. Aldossary, Ghulam Yasin, Abdulhadi Baykal, Bekir Ozcelik, Ismail Ercan

Summary: Two-phase nanocomposites of BTO and CNNFO were synthesized using solid state route. XRD analysis showed that with increasing CNNFO content, BTO crystallite size decreased while CNNFO size increased, leading to reduced porosity and enhanced grain connectivity. Optical properties revealed a decrease in band gap energy with increasing CNNFO content, and analysis of magnetic and dielectric properties indicated a significant impact of CNNFO on BTO material.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2021)

Article Materials Science, Multidisciplinary

Effects of Ce-Dy rare earths co-doping on various features of Ni-Co spinel ferrite microspheres prepared via hydrothermal approach

M. A. Almessiere, B. Unal, Y. Slimani, H. Gungunes, M. S. Toprak, N. Tashkandi, A. Baykal, M. Sertkol, A. Trukhanov, A. Yildiz, A. Manikandan

Summary: Ce-Dy co-doping has significant effects on the crystal structure, optical, and magnetic properties of Ni-Co spinel ferrite microspheres. Increasing Ce3+-Dy3+ content enhances the magnetic capabilities of the ferrite microspheres. The AC conductivity and dielectric properties are also influenced by the Ce-Dy content, with the dielectric properties strongly depending on the frequency.

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T (2021)

Article Chemistry, Multidisciplinary

Structural, Magnetic, and Mossbauer Parameters' Evaluation of Sonochemically Synthesized Rare Earth Er3+ and Y3+ Ions-Substituted Manganese-Zinc Nanospinel Ferrites

Munirah A. Almessiere, Sadik Guner, Hakan Gungunes, Murat Sertkol, Yassine Slimani, Rabail Badar, Sultan Akhtar, Sagar E. Shirsath, Abdulhadi Baykal

Summary: The effect of Er3+ and Y3+ ion-co-substituted Mn0.5Zn0.5ErxYxFe2-2xO4 spinel nanoferrites prepared by a sonochemical approach was investigated, revealing superparamagnetic and ferrimagnetic properties at room temperature and 10 K, respectively. The saturation magnetization and calculated magnetic moments showed indirect proportionalities with increasing ion content. The coercivities and squareness ratios indicated the multidomain nature of the nanoparticles. The sample with the highest magnetic hardness showed the largest coercivity and internal anisotropy field among all magnetically soft nanoparticles.

ACS OMEGA (2021)

Article Chemistry, Physical

Sonochemical synthesis of Mn0.5Zn0.5ErxDyxFe2-2xO4 (x=0.1) spinel nanoferrites: Magnetic and textural investigation

M. Sertkol, Y. Slimani, M. A. Almessiere, H. Sozeri, R. Jermy, A. Manikandan, S. E. Shirsath, A. UI-Hamid, A. Baykal

Summary: In this study, MnZn spinel nanoferrites were successfully fabricated via ultrasonic irradiation. The structural and morphological analysis were investigated using various instruments. The results showed that the prepared SNFs exhibited superparamagnetic and ferrimagnetic behavior. The saturation magnetization reached the maximum value at an Er and Dy co-doping concentration of 0.04 and decreased with further co-doping concentrations.

JOURNAL OF MOLECULAR STRUCTURE (2022)

Article Materials Science, Ceramics

Impact of Cd2+ substitution on the structural and magnetic peculiarities of MnZn nanospinel ferrites

M. Sertkol

Summary: In this study, Mn0.5Zn0.5CdxFe2-xO4 (0.0 <= x <= 0.5) nanoparticles were successfully synthesized by sol-gel combustion approach, and the effects of cadmium on their structural, morphological, and magnetic properties were investigated. It was found that the magnetization value of the nanoparticles increased with lower Cd2+ doping content and then decreased gradually.

JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY (2022)

Article Materials Science, Multidisciplinary

Excellent Microwave Absorbing Properties of Nd3+-Doped Ni-Zn Ferrite/PANI Nanocomposite for Ku Band

Ravindra N. Kambale, Krishnakumar M. Sagar, Sunil M. Patange, Sagar E. Shirsath, K. G. Suresh, Vaishali A. Bambole

Summary: Nd3+-substituted Ni-Zn ferrite nanoparticles were synthesized using the sol-gel autocombustion technique, and a nanocomposite with polyaniline (PANI) was prepared through in situ polymerization. The microwave absorbing properties of both the ferrite nanoparticles and the ferrite/PANI nanocomposite were investigated, showing that the nanocomposite has excellent absorption properties for incident microwaves.

PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE (2022)

Article Materials Science, Multidisciplinary

Alterations in the magnetic and electrodynamic properties of hard-soft Sr0.5Ba0.5Eu0.01Fe12O19/ NixCuyZnwFe2O4 nanocomposites

M. A. Almessiere, Y. Slimani, H. Attia, S. I. M. Sheikh, Ali Sadaqat, M. G. Vakhitov, D. S. Klygach, M. Sertkol, A. Baykal, A. V. Trukhanov

Summary: The study investigated the magnetization properties and exchange coupling of hard/soft nanocomposites by varying the ratios of different elements. The sample with the highest Zn content and the same Ni and Cu contents achieved higher saturation magnetization values at 10 K and 300 K. The waveguide approach was employed to study the electrodynamic properties of the samples.

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T (2021)

Article Chemistry, Multidisciplinary

Impact of Sm3+ and Er3+ Cations on the Structural, Optical, and Magnetic Traits of Spinel Cobalt Ferrite Nanoparticles: Comparison Investigation

Yassine Slimani, Munirah A. Almessiere, Sadik Guner, Bekir Aktas, Sagar E. Shirsath, Maxim Silibin, Alex Trukhanov, Abdulhadi Baykal

Summary: This study compared the structure, morphology, optical, and magnetic properties of Er3+ and Sm3+ codoped CoFe2O4 nanospinel ferrite synthesized via hydrothermal and sonochemical methods. The results showed that the distribution of cations and the variation in crystallite/particle sizes are key factors in controlling the intrinsic properties of the samples.

ACS OMEGA (2022)

Article Materials Science, Multidisciplinary

Effect of Bi3+ ions substitution on the structure, morphology, and magnetic properties of Co-Ni spinel ferrite nanofibers

M. Sertkol, S. Guener, M. A. Almessiere, Y. Slimani, A. Baykal, H. Gungunes, E. M. Alsulami, F. Alahmari, M. A. Gondal, S. E. Shirsath, A. Manikandan

Summary: In this study, various Co0.5Ni0.5BixFe2-xO4 spinel ferrite nanofibers were synthesized and their structure, morphology, and magnetic properties were investigated. The results showed that all samples exhibited a single-phase cubic spinel structure, with Bi3+ ions mainly occupying the B site. The magnetic measurements indicated the presence of ferrimagnetic phases in all samples, except for one. The substitution of Bi3+ ions generally decreased the magnetic properties, except for the sample with x = 0.04. Additionally, the squareness ratio provided information about the domain structure of the nanofiber samples.

MATERIALS CHEMISTRY AND PHYSICS (2022)

Article Chemistry, Multidisciplinary

Interface-Driven Multiferroicity in Cubic BaTiO3-SrTiO3 Nanocomposites

Sagar E. Shirsath, M. Hussein N. Assadi, Ji Zhang, Nitish Kumar, Anil S. Gaikwad, Jack Yang, Helen E. Maynard-Casely, Yee Yan Tay, Jianhao Du, Haoyu Wang, Yin Yao, Zibin Chen, Jinxing Zhang, Shujun Zhang, Sean Li, Danyang Wang

Summary: Perovskite multiferroics have attracted significant attention in the development of multifunctional electronic devices. This study demonstrates the interface-driven multiferroicity in low-cost and eco-friendly bulk polycrystalline materials. The fabricated nanocomposites exhibit both room-temperature ferromagnetism and ferroelectricity, with a robust magnetoelectric coupling.

ACS NANO (2022)

Article Materials Science, Ceramics

Enhanced multiferroic effect in multi-phased Eu substituted Bi-Fe-Mn perovskite oxides

U. K. Wadne, R. H. Kadam, K. M. Batoo, M. L. Mane, Sajjad Hussain, Sagar E. Shirsath, A. R. Shitre

Summary: The authors synthesized Eu-substituted Bi-Fe-Mn multiferroics and investigated the effects of different Eu doping concentrations on the crystal structure, magnetic and dielectric properties of the material.

CERAMICS INTERNATIONAL (2023)

Article Chemistry, Multidisciplinary

Impact of Ga3+ Ions on the Structure, Magnetic, and Optical Features of Co-Ni Nanostructured Spinel Ferrite Microspheres

Munirah A. Almessiere, Yassine Slimani, Sadaqat Ali, Abdulhadi Baykal, Rabindran Jermy Balasamy, Sadik Guner, Ismail A. Auwal, Alex Trukhanov, Sergei Trukhanov, Ayyar Manikandan

Summary: This study reports a new material, Ga3+ substituted Co-Ni ferrite, and explores its crystal phase, magnetic properties, morphology, and optical behavior. The results show that increasing Ga3+ content leads to changes in the energy bandgap and magnetic features.

NANOMATERIALS (2022)

Article Chemistry, Physical

Magnetic and optical characterizations of Dy-Eu co-substituted Mn0.5Zn0.5Fe2O4 nanospinel ferrites

M. Sertkol, Y. Slimani, M. A. Almessiere, A. Baykal, S. Akhtar, E. G. Polat, S. Caliskan

Summary: Mn0.5Zn0.5DyxEuxFe2-2xO4 (x <= 0.1) nanospinel ferrites were synthesized using ultrasonication. The samples exhibited cubic spinel phase without impurities and nanostructure confirmed by XRD, TEM, and SEM. DR spectra revealed energy band gaps between 2.44 and 2.56 eV. The magnetic properties of DyEu -> MnZn (x <= 0.1) NSFs were influenced by Eu3+-Dy3+ ion inclusion, showing superparamagnetic and ferromagnetic behavior.

JOURNAL OF MOLECULAR STRUCTURE (2023)

Article Chemistry, Multidisciplinary

A thorough Investigation of Rare-Earth Dy3+ Substituted Cobalt-Chromium Ferrite and Its Magnetoelectric Nanocomposite

Ram H. Kadam, Ravi Shitole, Santosh B. Kadam, Kirti Desai, Atul P. Birajdar, Vinod K. Barote, Khalid Mujasam Batoo, Sajjad Hussain, Sagar E. Shirsath

Summary: The stoichiometric compositions of a ferrite system with a chemical formula CoCr0.5DyxFe1.5-xO4 were prepared using the sol-gel auto-combustion method. The structural, morphological and magnetic properties were studied using various techniques. XRD analysis confirmed the cubic spinel structure of the samples. The cation distribution and magnetoelectric properties were also investigated.

NANOMATERIALS (2023)

Article Chemistry, Physical

The crystalline/amorphous stacking structure of SnO2 microspheres for excellent NO photocatalytic performance

Li Zhang, Ruobing Tong, Sagar E. Shirsath, Yanling Yang, Guohui Dong

Summary: Surface amorphization via a crystalline/amorphous core-shell structure is an effective approach for constructing a high-efficiency photocatalyst. The innovative crystalline/amorphous stacking structure of SnO2 microspheres significantly improves photocatalytic NO removal under visible light irradiation. This structure enhances charge separation efficiency and inhibits surface absorption competition, leading to the generation of more active oxygen species for NO oxidation.

JOURNAL OF MATERIALS CHEMISTRY A (2021)

Article Materials Science, Multidisciplinary

Non-synthetic luminescent graphene quantum dots in coconut water for aniline sensing applications

A. Aly, M. Ghali, A. Osman, M. K. El Nimr

Summary: This study reports the discovery of naturally occurring luminescent graphene quantum dots (GQDs) in coconut water for the first time. The GQDs were identified through various measurements and were found to have dual sizes and emit different wavelengths of light. The GQDs were also utilized as an efficient optical sensor for aniline liquid detection.

MATERIALS RESEARCH BULLETIN (2024)

Article Materials Science, Multidisciplinary

High-performance e-VOPO4 cathode materials for sodium ion battery applications

Zehua Chen, Wencheng Ma, Qinglu Fan, Yanhua Liu, Min Sun, Shuo Wang

Summary: The nanoscale e-VOPO4 materials were successfully prepared by hydrothermal synthesis and calcination, showing high purity and suitable particle size. It exhibited satisfactory electrochemical performance as cathode material for sodium ion batteries, making it a potential candidate for high energy storage systems.

MATERIALS RESEARCH BULLETIN (2024)

Article Materials Science, Multidisciplinary

Multifunctional terahertz device with active switching between bimodal perfect absorption and plasmon-induced transparency

Tao Liu, Yahui Liu, Le Ling, Zhongxi Sheng, Zao Yi, Zigang Zhou, Yongjia Yang, Bin Tang, Qingdong Zeng, Tangyou Sun

Summary: In this paper, a terahertz (THz) micronano device that can switch between bimodal absorption and plasmon-induced transparency (PIT) is proposed. The device consists of layers of graphene, silica, and vanadium dioxide, and has a simple structure, easy tuning, and wide-angle absorption. The device achieves perfect absorption at specific frequencies and is highly sensitive to environmental refractive index. It also has the functions of a three-frequency asynchronous optical switch and slow light effect.

MATERIALS RESEARCH BULLETIN (2024)

Article Materials Science, Multidisciplinary

Direct laser printing of 3D optical imaging based on full-spectrum solar-absorption-enhanced perovskite-type oxides

Xiaobo Luo, Songhan Hu, Qiudong Duan, Dacheng Zhou, Jialin Chen, Yugeng Wen, Jianbei Qiu

Summary: The exploration of solar light absorption by a material is important in photonics and optoelectronics. This study reveals the potential of Ba3-xGa2O6:xBi3+ as a promising candidate for various photonic and optoelectronic applications, and demonstrates the use of the material in double-sided laser printing for three-dimensional optical imaging.

MATERIALS RESEARCH BULLETIN (2024)

Article Materials Science, Multidisciplinary

Interface and magnetic-dielectric synergy strategy to develop Fe3O4-Fe2CO3/multi-walled carbon nanotubes/reduced graphene oxide mixed-dimensional multicomponent nanocomposites for microwave absorption

Hemin Wang, Yanling Hao, Lele Xiang, Xiaosi Qi, Lei Wang, Junfei Ding, Yunpeng Qu, Jing Xu, Wei Zhong

Summary: This study designed Fe3O4-FeCO3/MWCNTs/RGO MCNCs composites and fabricated large-scale samples using hydrothermal and freeze-drying methods. The microstructural investigation showed that these materials had a mixed-dimensional structure, which improved impedance matching features, polarization, and conduction loss abilities, leading to significantly enhanced electromagnetic absorption properties.

MATERIALS RESEARCH BULLETIN (2024)

Article Materials Science, Multidisciplinary

All-dielectric terahertz metamaterial with polarization switching characteristic

Zhenshan Yu, Hao Chen, Xuequan Chen, Yu-Sheng Lin

Summary: This study presents a silicon dielectric metamaterial (SDM) composed of two outer symmetric semi-circular rings and two inner symmetric split-ring resonators (SRRs). The electromagnetic responses of the SDM device in different modes were studied through numerical simulations and experiments. Increasing the structure height of the SDM device resulted in red-shifted resonances and stronger intensities. This study provides a new design strategy for the development of frequency filtering, polarization switching, and resonance modulation characteristics in THz-wave applications.

MATERIALS RESEARCH BULLETIN (2024)

Article Materials Science, Multidisciplinary

α-PW11Fe(Co/Ni)/BC derived carbon fiber based nanocomposites for high efficiency electromagnetic wave absorption via synergistic effects of polarization and conductance

Yiming Qi, Na Zhang, Meng Zong, Yangxianzi Liu, Weixing Chen

Summary: This study prepares dielectric/carbon fiber based nanocomposites wave-absorbing materials using liquid diffusion and high temperature carbonization strategies. By tuning the element type, drying mode, and filling amount, the electromagnetic parameters and absorbing properties can be adjusted. The best synthesized sample shows excellent absorbing performance, making it suitable for a wide range of electromagnetic wave absorption applications.

MATERIALS RESEARCH BULLETIN (2024)

Article Materials Science, Multidisciplinary

Study of the centers responsible for the TL emission by EPR and PL analysis of Eu-doped CaSiO3 phosphors synthesized by the devitrification method

Carlos D. Gonzales-Lorenzo, T. K. Gundu Rao, Alberto A. Ccollque-Quispe, Jorge Ayala-Arenas, Monise B. Gomes, Betzabel N. Silva-Carrera, Roseli F. Gennari, Valeria S. Pachas, F. Monzon-Macedo, H. Loro, Jose F. D. Chubaci, Nilo F. Cano, Rene R. Rocca, Shigueo Watanabe

Summary: In this study, CaSiO3 doped with different ppm of Eu was synthesized using the devitrification method. Various physical properties were analyzed, revealing that the intensity and temperature of the high-temperature TL peak increased with higher dopant amounts. Fluorescence measurements indicated the presence of Eu2+ and Eu3+ ions in the samples. EPR spectra confirmed the existence of two defect centers.

MATERIALS RESEARCH BULLETIN (2024)

Article Materials Science, Multidisciplinary

Synergetic assembly of a molybdenum disulfide/carbon quantum dot heterojunction with enhanced light absorption and electron transfer di-functional properties for photocatalysis

Yanning Qu, Xinyang Li, Mei Cui, Renliang Huang, Wanquan Ma, Yunting Wang, Rongxin Su, Wei Qi

Summary: In this study, a new molybdenum disulfide/N,S-doped carbon quantum dots (MoS2/N,S-CQDs) heterojunction with enhanced light absorption and electrons transfer di-functional properties was constructed via a facile one-pot hydrothermal method. The heterojunction showed remarkable efficiencies in degrading methylene blue (MB) and malachite green (MG) in an actual water system under simulated sunlight irradiation. The facile synthetic technique and effective multifunctional properties of the composite have the potential for further research and industrial applications.

MATERIALS RESEARCH BULLETIN (2024)

Article Materials Science, Multidisciplinary

Acid-alkali assisted synthesis of white tremella-like g-C3N4 homojunction for photocatalytic degradation under visible light

Jiayi Wang, Penggang Ren, Xueyan Zhao, Zhengyan Chen, Yanling Jin, Zengping Zhang

Summary: In this study, a novel homojunction photocatalyst was developed by combining defective g-C3N4 and flaked g-C3N4, which showed excellent degradation performance and cycling stability, and exhibited practicality in several simulation experiments.

MATERIALS RESEARCH BULLETIN (2024)

Article Materials Science, Multidisciplinary

Zn-MOF-derived hierarchical carbon nanorods superstructures with tunable microwave absorption properties

Jing Yan, Xiaoxiao Zhao, Weixing Chen, Panbo Liu

Summary: This research presents a self-templated strategy to prepare a spherical superstructure of carbon nanorods through material modification and pyrolysis. The resulting material exhibits a large controllable radius of curvature and shows excellent microwave absorbing properties due to its high specific surface area and mesoporous structure.

MATERIALS RESEARCH BULLETIN (2024)

Review Materials Science, Multidisciplinary

Electrolytes for liquid metal batteries

Qinglin Zeng, Zepeng Lv, Shaolong Li, Bin Yang, Jilin He, Jianxun Song

Summary: Liquid metal batteries possess stable safety performance, high rate performance, and thermal stability. The electrolyte, an important component of the battery, plays a significant role in achieving these remarkable performance characteristics. This paper reviews the important research progress of liquid metal batteries electrolyte and discusses the influence of different electrolyte types on energy efficiency. It also highlights the limitations and challenges of existing electrolytes and proposes key development directions for liquid metal electrolytes.

MATERIALS RESEARCH BULLETIN (2024)

Article Materials Science, Multidisciplinary

Mn3O4@C micro-flakes modified Ti/TiH2/β-PbO2 anode for accelerating oxygen evolution reaction in zinc electrowinning

Song Wu, Junli Wang, Xuanbing Wang, Di Jiang, Jinlong Wei, Xiaoning Tong, Zhenwei Liu, Qingxiang Kong, Naixuan Zong, Ruidong Xu, Linjing Yang

Summary: In this study, a composite electrode composed of Ti/TiH2/beta-PbO2_Mn3O4@C was fabricated and investigated for zinc electrowinning. The composite electrode exhibited low overpotential, Tafel slope, icorr, and high voltage stability, outperforming most reported Ti-based PbO2 electrode materials. The excellent catalytic activity can be attributed to the low resistance and porous interlayer of TiH2 nanosheets, as well as the addition of Mn3O4@C micro-flakes to the active layer.

MATERIALS RESEARCH BULLETIN (2024)

Article Materials Science, Multidisciplinary

Simulation study of a nanomaterial interacting with ionizing radiation through OTOR and IMTS models for different particle sizes

E. Tsoutsoumanos, T. Karakasidis, N. Laskaris, P. G. Konstantinidis, G. S. Polymeris, G. Kitis

Summary: This study investigates the correlation between nanocrystal dimensions and thermoluminescence signal magnitude through simulations conducted in Python. Two mathematical models, OTOR and IMTS, were used to derive theoretical luminescence signals. The obtained results were compared with experimental data and a thorough comparative discussion was conducted.

MATERIALS RESEARCH BULLETIN (2024)

Article Materials Science, Multidisciplinary

Enhanced photoresponsivity in Bi2Se3 decorated GaN nanowall network-based photodetectors

Vishnu Aggarwal, Sudhanshu Gautam, Aditya Yadav, Rahul Kumar, Bipul Kumar Pradhan, Brajesh S. Yadav, Govind Gupta, Senthil Kumar Muthusamy, Sumeet Walia, Sunil Singh Kushvaha

Summary: Recently, there has been a great demand for highly responsive photodetectors that can detect a wide range of wavelengths. Researchers have successfully fabricated a broadband metal-semiconductor-metal photodetector by integrating sputtered Bi2Se3 with laser molecular beam epitaxy grown GaN film. This photodetector shows high responsivity in both the ultraviolet and near-infrared regions.

MATERIALS RESEARCH BULLETIN (2024)