4.4 Article

Genetic diversity of reef fishes around Cuba: a multispecies assessment

Journal

MARINE BIOLOGY
Volume 163, Issue 7, Pages -

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00227-016-2935-6

Keywords

-

Funding

  1. International Foundation for Science [A4139-1]
  2. Embassy of France in Cuba

Ask authors/readers for more resources

We aimed to identify biotic and abiotic factors underlying genetic structure and diversity of reef fish around Cuba. For three species, Stegastes partitus, Haemulon flavolineatum and Acanthurus tractus, we investigated the effects of shared environmental factors, such as the geography of the Cuban Archipelago, and specific characteristics, such as life history traits, on genetic structure and diversity. Samples were collected at five locations around Cuba. For S. partitus and H. flavolineatum, mitochondrial DNA and microsatellite loci were examined, whereas only mitochondrial DNA polymorphism was analyzed for A. tractus. All three species showed high genetic diversity. Mismatch distribution analyses suggest past population expansion in all species, but at different times in each species. Haplotype network and population genetic analyses suggest that: (1) S. partitus went through a recent population bottleneck in the late Pleistocene, (2) H. flavolineatum went through a population bottleneck but earlier, in the mid-Pleistocene, and (3) A. tractus has had a large and stable population size with coalescence times that go back to the late Pliocene. Genetic polymorphism in H. flavolineatum and A. tractus is homogeneous throughout the archipelago, whereas there is significant genetic structure in S. partitus. Genetic differentiation among S. partitus populations is most likely the result of the combined effects of egg type and oceanic current patterns along the Cuban coast.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available