4.4 Article

Phosphorus speciation, transformation and retention in the Three Gorges Reservoir, China

Journal

MARINE AND FRESHWATER RESEARCH
Volume 67, Issue 2, Pages 173-186

Publisher

CSIRO PUBLISHING
DOI: 10.1071/MF14344

Keywords

Changjiang River (Yangtze River); particle size fractions; phosphorus forms

Funding

  1. National Basic Research Program of China (973 Program) [2011CB403602]
  2. Natural Science Foundation of China [41106072, 30490232]

Ask authors/readers for more resources

Damming of river systems allowing the transformation of former rivers into artificial lakes will increase the transformation and retention of dissolved and sediment-associated phosphorus (P). The reservoir is therefore a 'filter' or 'converter', reducing and delaying the transport of nutrients to marine systems. Our study of the Three Gorges Reservoir (TGR) found that no stratification of phosphorus occurred, and the high particulate phosphorus (PP) concentrations upstream decreased gradually in the reservoir. Detrital P was found in greater concentrations in the surface sediment, accounting for 39% of PP; exchangeable P was rare and contributed very little to the total P budget. P forms and their concentrations in the suspended particulate matter varied throughout the TGR, with a significant increase of bioavailable P in the, 8-mu m particle fraction from 27% of PP in Fuling to 60% in Yichang, and decreasing detrital P and authigenic P in each grain size class. The TGR acted as a 'converter' for the dissolved reactive phosphorus, and it therefore plays a minor role in trapping incoming total dissolved phosphorus; whereas the TGR behaved as a 'filter' for the PP, especially for the coarse fraction, which resulted in the retention of 70% of the non-bioavailable PP. The controlling mechanism of P species and retention in the reservoir is particulate settling and its associated effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available