4.7 Article

Throughput Optimization for Noma Energy Harvesting Cognitive Radio With Multi-UAV-Assisted Relaying Under Security Constraints

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCCN.2022.3225165

Keywords

NOMA; Throughput; Security; Resource management; Relays; Autonomous aerial vehicles; System performance; Cognitive radio (CR); non-orthogonal multiple access (NOMA); unmanned aerial vehicle (UAV); hybrid CGA-PSO; security constraints

Ask authors/readers for more resources

This paper investigates the throughput of a non-orthogonal multiple access (NOMA)-based cognitive radio (CR) system with multiple unmanned aerial vehicle (UAV)-assisted relays under system performance and security constraints. A communication protocol that includes an energy harvesting (EH) phase and multiple communication phases is proposed. The analysis focuses on the outage probability of the primary network, the throughput of the secondary network, and the leakage probability at the eavesdropper (EAV). A hybrid search method combining particle swarm optimization (PSO) and continuous genetic algorithm (CGA) is proposed to optimize the UR configurations and the NOMA power allocation to maximize the throughput of the secondary network under performance and security constraints.
This paper investigates the throughput of a non-orthogonal multiple access (NOMA)-based cognitive radio (CR) system with multiple unmanned aerial vehicle (UAV)-assisted relays under system performance and security constraints. We propose a communication protocol that includes an energy harvesting (EH) phase and multiple communication phases. In the EH phase, the multiple UAV relays (URs) harvest energy from a power beacon. In the first communication phase, a secondary transmitter (ST) uses the collected energy to send confidential signals to the first UR using NOMA. Simultaneously, a ground base station communicates with a primary receiver (PR) under interference from the ST. In the subsequent communication phases, the next URs apply the decode-and-forward technique to transmit the signals. In the last communication phase, the Internet of Things destinations (IDs) receive their signals in the presence of an eavesdropper (EAV). Accordingly, the outage probability of the primary network, the throughput of the secondary network, and the leakage probability at the EAV are analyzed. On this basis, we propose a hybrid search method combining particle swarm optimization (PSO) and continuous genetic algorithm (CGA) to optimize the UR configurations and the NOMA power allocation to maximize the throughput of the secondary network under performance and security constraints.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available