4.6 Article

A battery-less wireless implant for the continuous monitoring of vascular pressure, flow rate and temperature

Journal

NATURE BIOMEDICAL ENGINEERING
Volume -, Issue -, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41551-023-01022-4

Keywords

-

Ask authors/readers for more resources

Devices for monitoring blood haemodynamics can guide the perioperative management of patients with cardiovascular disease. In this study, an integrated wireless sensor capable of measuring pressure, flow rate and temperature simultaneously and in real time was developed. The device showed comparable performance to clinical tools in large animal models, providing the potential for continuous monitoring of blood haemodynamics in patients.
Devices for monitoring blood haemodynamics can guide the perioperative management of patients with cardiovascular disease. Current technologies for this purpose are constrained by wired connections to external electronics, and wireless alternatives are restricted to monitoring of either blood pressure or blood flow. Here we report the design aspects and performance parameters of an integrated wireless sensor capable of implantation in the heart or in a blood vessel for simultaneous measurements of pressure, flow rate and temperature in real time. The sensor is controlled via long-range communication through a subcutaneously implanted and wirelessly powered Bluetooth Low Energy system-on-a-chip. The device can be delivered via a minimally invasive transcatheter procedure or it can be mounted on a passive medical device such as a stent, as we show for the case of the pulmonary artery in a pig model and the aorta and left ventricle in a sheep model, where the device performs comparably to clinical tools for monitoring of blood flow and pressure. Battery-less and wireless devices such as these that integrate capabilities for flow, pressure and temperature sensing offer the potential for continuous monitoring of blood haemodynamics in patients. A battery-less and wireless integrated sensor implanted in the heart or in a blood vessel can measure blood pressure, flow rate and temperature simultaneously and in real time, as shown in large animal models.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available