4.8 Article

Learning the right channel in multimodal imaging: automated experiment in piezoresponse force microscopy

Journal

NPJ COMPUTATIONAL MATERIALS
Volume 9, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41524-023-00985-x

Keywords

-

Ask authors/readers for more resources

We developed automated experiment workflows for identifying the best predictive channel in spectroscopic measurements. The approach combines ensembled deep kernel learning for probabilistic predictions and reinforcement learning for channel selection. The implementation in multimodal imaging of piezoresponse force microscopy (PFM) showed that the amplitude is the best predictive channel for polarization-voltage and frequency-voltage hysteresis loop areas. This workflow and code can be applied to other multimodal imaging and local characterization methods.
We report the development and experimental implementation of the automated experiment workflows for the identification of the best predictive channel for a phenomenon of interest in spectroscopic measurements. The approach is based on the combination of ensembled deep kernel learning for probabilistic predictions and a basic reinforcement learning policy for channel selection. It allows the identification of which of the available observational channels, sampled sequentially, are most predictive of selected behaviors, and hence have the strongest correlations. We implement this approach for multimodal imaging in piezoresponse force microscopy (PFM), with the behaviors of interest manifesting in piezoresponse spectroscopy. We illustrate the best predictive channel for polarization-voltage hysteresis loop and frequency-voltage hysteresis loop areas is amplitude in the model samples. The same workflow and code are applicable for any multimodal imaging and local characterization methods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available