4.6 Article

Reducing Long-Term Mortality Post Transcatheter Aortic Valve Replacement Requires Systemic Differentiation of Patient-Specific Coronary Hemodynamics

Journal

JOURNAL OF THE AMERICAN HEART ASSOCIATION
Volume 12, Issue 11, Pages -

Publisher

WILEY
DOI: 10.1161/JAHA.123.029310

Keywords

cardiac fluid dynamics; coronary hemodynamics; global hemodynamics; local fluid dynamics; patient-specific lumped parameter model; transcatheter aortic valve replacement

Ask authors/readers for more resources

Despite the benefits of TAVR, many candidates have coronary artery disease. A computational framework was developed to study the impact of TAVR on coronary and cardiac hemodynamics. The results suggest that TAVR may adversely affect coronary hemodynamics and increase left ventricle workload.
BackgroundDespite the proven benefits of transcatheter aortic valve replacement (TAVR) and its recent expansion toward the whole risk spectrum, coronary artery disease is present in more than half of the candidates for TAVR. Many previous studies do not focus on the longer-term impact of TAVR on coronary arteries, and hemodynamic changes to the circulatory system in response to the anatomical changes caused by TAVR are not fully understood. Methods and ResultsWe developed a multiscale patient-specific computational framework to examine the effect of TAVR on coronary and cardiac hemodynamics noninvasively. Based on our findings, TAVR might have an adverse impact on coronary hemodynamics due to the lack of sufficient coronary blood flow during diastole phase (eg, maximum coronary flow rate reduced by 8.98%, 16.83%, and 22.73% in the left anterior descending, left circumflex coronary artery, and right coronary artery, respectively [N=31]). Moreover, TAVR may increase the left ventricle workload (eg, left ventricle workload increased by 2.52% [N=31]) and decrease the coronary wall shear stress (eg, maximum time averaged wall shear stress reduced by 9.47%, 7.75%, 6.94%, 8.07%, and 6.28% for bifurcation, left main coronary artery, left anterior descending, left circumflex coronary artery, and right coronary artery branches, respectively). ConclusionsThe transvalvular pressure gradient relief after TAVR might not result in coronary flow improvement and reduced cardiac load. Optimal revascularization strategy pre-TAVR and progression of coronary artery disease after TAVR could be determined by noninvasive personalized computational modeling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available