4.5 Article

Enhancement of wound closure by modifying dual release patterns of stromal-derived cell factor-1 and a macrophage recruitment agent from gelatin hydrogels

Journal

Publisher

WILEY
DOI: 10.1002/term.2202

Keywords

dual release; cell recruitment; gelatin hydrogel; macrophage; mesenchymal stem cell; wound closure

Funding

  1. Japan Society for the Promotion of Science (JSPS) [255422]

Ask authors/readers for more resources

The objective of the present study is to evaluate the effects of the release patterns of stromal derived factor (SDF)-1 and sphingosine-1 phosphate agonist (SEW2871), used as MSC and macrophage recruitment agents, on the wound closure of diabetic mouse skin defects. To achieve different release patterns, hydrogels were prepared using two types of gelatin with isoelectric points (IEP) of 5 and 9, into which SDF-1 and SEW2871 were then incorporated in various combinations. When the hydrogels incorporating SDF-1 and SEW2871 were applied into wound defects of diabetic mice, the number of MSCs and macrophages recruited to the defects and the levels of pro-and anti-inflammatory cytokines were found to be dependent on the release profiles of SDF-1 and SEW2871. Of particular interest was the case of a rapid release of SDF-1 combined with a controlled release of SEW2871. This resulted in a higher number of M2 macrophages and gene expression levels of anti-inflammatory cytokines 3 days after implantation and faster wound closure than when pairing the controlled release of SDF-1 with a rapid release of SEW2871. Therefore, the present study demonstrates that different release patterns of SDF-1 and SEW2871 can enhance the in vivo recruitment of MSCs and macrophages, and can promote skin wound closure through the modulation of inflammation. Copyright (c) 2016 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available