4.5 Article

Magnetorheological brushes-Scarcely explored class of magnetic material

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.jmmm.2023.170603

Keywords

Magnetorheological brush; Magnetorheological fluid; Magnetorheological elastomer; Magnetic field; Magnetoactive materials

Ask authors/readers for more resources

This study explores the magneto-mechanical properties of magnetorheological fluid (MRF) brushes and magnetorheological elastomer (MRE) brushes. The MRE brushes have higher stiffness but lower MR response compared to MRF brushes. Both MRF and MRE brushes show an increased MR response with increased magnetic filler concentration.
Magnetic materials such as magnetorheological (MR) fluids, and magnetorheological elastomers exhibit a broad change in their material properties, for example, viscosity and storage modulus in the presence of a magnetic field. Studies related to such MR fluid and elastomer materials are extensively available. The MR brush, meanwhile, is less frequently explored and understood. An MR brush is defined by the brush-like structures formed from chains of magnetic particles embedded within a carrier matrix, typically fluids or elastomers. In this study, we explore magnetorheological fluid (MRF) brush and magnetorheological elastomer (MRE) brush and investigate their magneto-mechanical properties. The investigation measured the stiffness and the MR response, defined as the change in properties in the presence of a magnetic field for MRF and MRE brushes. Further dependence of the magnetic effect on material and preparation parameters, mainly concentration of magnetic particles and curing flux density (for MRE brush) were investigated. The responsiveness of the brushes is compared using the Magnetorheological response index, as a proposed metric in this study. The results indicate that the MRE brush possess a greater absolute stiffness, but a lower MR response than that of the MRF brush. Both MRF and MRE brushes show an increase in the MR response with an increased concentration of magnetic fillers. MRE brush further demonstrate an enhanced MR response, which could be highly comparable to MRF brush coinciding with an increase in the magnetic flux density during the curing process. The fundamental investi-gation of both solid and fluid MR brushes in this study opens a new avenue in the area of magnetic materials. This new class of magnetically controllable materials could potentially be employed in applications where soft and tuneable bristle-like structures are desired.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available