4.7 Article

Carbon footprint at institutions of higher education: The case of the University of Oulu

Journal

JOURNAL OF ENVIRONMENTAL MANAGEMENT
Volume 329, Issue -, Pages -

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2022.117056

Keywords

Carbon footprint; Carbon neutrality; Greenhouse gas emissions; Higher education institution

Ask authors/readers for more resources

In response to the need for greenhouse gas emission reduction, organizations are increasingly accounting for their carbon footprint. However, existing guidelines often do not consider the unique characteristics of organizations such as higher education institutions. This study provides a case study for a Northern European institution, aiming to expand the available calculation methodologies and identify limitations and mitigation measures for reaching carbon neutrality.
As an answer to the need to reduce greenhouse gas emissions, organizations are increasingly making efforts to account for their carbon footprint. While general guidelines for carbon footprint calculation exist, they usually do not consider special characteristics of organisations such as institutions of higher education. Case studies can act then as learning tools, and comparisons between applied methodologies can be used to develop best practices. However, a lack of case studies published in peerreviewed journals limits access to the calculation results. This work provides a case study for a Northern European institution to extend the pool of available calculation methodologies tested under real-life conditions. The carbon footprint calculation of the University of Oulu uti-lises a hybrid model, combining approaches of Environmentally Extended Input-Output Analysis and Life-Cycle Assessment. The focus of the work was to consider included scopes and categories of emissions that represent indirect and non-energy-related greenhouse gas emissions, such as commuting or procurement of research and laboratory equipment. In 2019, the institution's emission inventory sums up to 19,072 t CO2e, with the highest share due to the use of district heat on campus. Another goal of conducting this research was to show the limitations researchers might encounter when analysing caused emissions on an organisational level, and how the calculated carbon footprint can help to identify the best mitigation measures and possibilities for universities to reach carbon neutrality. It was found that the availability of information and missing strategies for data collection are prominent limiting factors. Favourable mitigation measures include the implementation of ener-gysaving policies and improved policies for procurements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available