4.7 Review

A survey on machine learning for recurring concept drifting data streams

Journal

EXPERT SYSTEMS WITH APPLICATIONS
Volume 213, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eswa.2022.118934

Keywords

Regime change; Online machine learning; Data streams; Concept drift; Meta learning

Ask authors/readers for more resources

This survey reviews the methods and research trends for dealing with concept drift in continuous data streams. It introduces the field of data stream learning, discusses mechanisms for adapting to or detecting concept drifts, and presents supervised and non-supervised methods for handling seasonality in data streams. The aim is to provide future research directions in handling shifts and recurrences in continuous learning scenarios.
The problem of concept drift has gained a lot of attention in recent years. This aspect is key in many domains exhibiting non-stationary as well as cyclic patterns and structural breaks affecting their generative processes. In this survey, we review the relevant literature to deal with regime changes in the behaviour of continuous data streams. The study starts with a general introduction to the field of data stream learning, describing recent works on passive or active mechanisms to adapt or detect concept drifts, frequent challenges in this area, and related performance metrics. Then, different supervised and non-supervised approaches such as online ensembles, meta-learning and model-based clustering that can be used to deal with seasonalities in a data stream are covered. The aim is to point out new research trends and give future research directions on the usage of machine learning techniques for data streams which can help in the event of shifts and recurrences in continuous learning scenarios in near real-time.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available