4.2 Article

Effects of Donor Age, Long-Term Passage Culture, and Cryopreservation on Tonsil-Derived Mesenchymal Stem Cells

Journal

CELLULAR PHYSIOLOGY AND BIOCHEMISTRY
Volume 36, Issue 1, Pages 85-99

Publisher

KARGER
DOI: 10.1159/000374055

Keywords

Tonsil-derived mesenchymal stem cells; Donor Age; Long-term passage; Cryopreservation

Funding

  1. National Research Foundation of Korea (NRF) - Ministry of Education, Science and Technology [NRF 2014R1A2A1A11052999, NRF-2012R1A1A4A01009912]

Ask authors/readers for more resources

Objectives: Human mesenchymal stem cells (MSCs) are efficacious in various cellular therapeutic applications and have been isolated from several tissues. Recent studies have reported that human tonsil tissue contains a new source of progenitor cells, potentially applicable for cell-based therapies. Information about the effects of donor age, long-term passage and cryopreservation are essential for clinical applications and cell-based therapies. Therefore, the authors investigated how the morphology, cell-surface markers, proliferation potential and differentiation capacity of tonsil-derived MSCs (T-MSCs) were affected by donor age, long-term passage, and cryopreservation. Materials and Methods: T-MSCs were isolated from tonsillar tissue of 20 patients undergoing tonsillectomy. Authors evaluated the effects of donor-age, long-term passage, and cryopreservation on the morphology, surface markers, proliferation potential and differentiation capacities of T-MSCs. Results: T-MSCs exhibited a fibroblast-like, spindle-shaped appearance. There were no significant morphological differences according to donor age, long-term passage or cryopreservation. T-MSCs isolated from donors of various ages were positive for markers CD90, CD44, and CD73, but negative for CD45, CD31, and HLA-DR. There were no significant differences in the expression of positive and negative surface markers as a function of donor age, long-term passage and cryopreservation. T-MSCs from different donor age groups showed similar proliferation potentials after passage 2. After long-term passage and cryopreservation, there were no significant morphological differences. Cryopreservation did not affect the proliferation potential of T-MSCs, but there was a significant decrease in the proliferation potential in long-term passage T-MSCs (passage 15). The effect of donor age, long-term passage and cryopreservation on the in vitro adipogenic, osteogenic, and chondrogenic differentiation potential of T-MSCs was not significant. Conclusion: The effect of donor age, long-term passage culture, and cryopreservation on T-MSC properties are negligible, except for the proliferation capacity of long-term cultured T-MSCs. Therefore, T-MSCs are considered to be promising MSCs that can be used as future alternative sources for autologous or allogenic MSCs. Copyright (C) 2015 S. Karger AG, Basel

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available