4.8 Article

A substrate-less nanomesh receptor with meta-learning for rapid hand task recognition

Journal

NATURE ELECTRONICS
Volume 6, Issue 1, Pages 64-+

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41928-022-00888-7

Keywords

-

Ask authors/readers for more resources

With the help of machine learning, electronic devices such as gloves and skins can track human hand movements and recognize objects and gestures. However, these devices are bulky and cannot adapt to the body's curvature. This study introduces a substrate-less nanomesh receptor coupled with unsupervised meta-learning framework, allowing user-independent recognition of various hand tasks with minimal labeled data.
With the help of machine learning, electronic devices-including electronic gloves and electronic skins-can track the movement of human hands and perform tasks such as object and gesture recognition. However, such devices remain bulky and lack an ability to adapt to the curvature of the body. Furthermore, existing models for signal processing require large amounts of labelled data for recognizing individual tasks for every user. Here we report a substrate-less nanomesh receptor that is coupled with an unsupervised meta-learning framework and can provide user-independent, data-efficient recognition of different hand tasks. The nanomesh, which is made from biocompatible materials and can be directly printed on a person's hand, mimics human cutaneous receptors by translating electrical resistance changes from fine skin stretches into proprioception. A single nanomesh can simultaneously measure finger movements from multiple joints, providing a simple user implementation and low computational cost. We also develop a time-dependent contrastive learning algorithm that can differentiate between different unlabelled motion signals. This meta-learned information is then used to rapidly adapt to various users and tasks, including command recognition, keyboard typing and object recognition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available