4.7 Article

Litchi Detection in a Complex Natural Environment Using the YOLOv5-Litchi Model

Journal

AGRONOMY-BASEL
Volume 12, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/agronomy12123054

Keywords

litchi detection; YOLOv5-litchi; complex natural environment; convolutional block attention module; Complete Intersection over Union

Ask authors/readers for more resources

This paper proposes an improved litchi detection model named YOLOv5-litchi, which enhances the accuracy and performance of litchi detection in complex natural environments. The effectiveness of the improvement is verified through experiments, and the model exhibits the best performance in litchi detection. The model has fast inference speed and is suitable for litchi detection in agriculture.
Detecting litchis in a complex natural environment is important for yield estimation and provides reliable support to litchi-picking robots. This paper proposes an improved litchi detection model named YOLOv5-litchi for litchi detection in complex natural environments. First, we add a convolutional block attention module to each C3 module in the backbone of the network to enhance the ability of the network to extract important feature information. Second, we add a small-object detection layer to enable the model to locate smaller targets and enhance the detection performance of small targets. Third, the Mosaic-9 data augmentation in the network increases the diversity of datasets. Then, we accelerate the regression convergence process of the prediction box by replacing the target detection regression loss function with CIoU. Finally, we add weighted-boxes fusion to bring the prediction boxes closer to the target and reduce the missed detection. An experiment is carried out to verify the effectiveness of the improvement. The results of the study show that the mAP and recall of the YOLOv5-litchi model were improved by 12.9% and 15%, respectively, in comparison with those of the unimproved YOLOv5 network. The inference speed of the YOLOv5-litchi model to detect each picture is 25 ms, which is much better than that of Faster-RCNN and YOLOv4. Compared with the unimproved YOLOv5 network, the mAP of the YOLOv5-litchi model increased by 17.4% in the large visual scenes. The performance of the YOLOv5-litchi model for litchi detection is the best in five models. Therefore, YOLOv5-litchi achieved a good balance between speed, model size, and accuracy, which can meet the needs of litchi detection in agriculture and provides technical support for the yield estimation and litchi-picking robots.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available