4.5 Article Proceedings Paper

Electromagnetic wave propagation in spatially homogeneous yet smoothly time-varying dielectric media

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jqsrt.2015.12.007

Keywords

Wave propagation; Time-dependent media; Amplification and attenuation of waves; Energy exchange; Frequency conversion; Exactly solvable systems

Ask authors/readers for more resources

We explore the propagation and transformation of electromagnetic waves through spatially homogeneous yet smoothly time-dependent media within the framework of classical electrodynamics. By modelling the smooth transition, occurring during a finite period tau, as a phenomenologically realistic and sigmoidal change of the dielectric permittivity, an analytically exact solution to Maxwell's equations is derived for the electric displacement in terms of hypergeometric functions. Using this solution, we show the possibility of amplification and attenuation of waves and associate this with the decrease and increase of the time-dependent permittivity. We demonstrate, moreover, that such an energy exchange between waves and non-stationary media leads to the transformation (or conversion) of frequencies. Our results may pave the way towards controllable light matter interaction in time-varying structures. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Optics

The conditions for the preservation of duality symmetry in a linear medium

Koen van Kruining, Joerg B. Goette

JOURNAL OF OPTICS (2016)

Article Physics, Multidisciplinary

Instantaneous modulations in time-varying complex optical potentials

Armen G. Hayrapetyan, S. P. Klevansky, Joerg B. Goette

NEW JOURNAL OF PHYSICS (2017)

Article Multidisciplinary Sciences

Chirality and the angular momentum of light

Robert P. Cameron, Jorg B. Gotte, Stephen M. Barnett, Alison M. Yao

PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES (2017)

Article Physics, Multidisciplinary

Nonuniform Currents and Spins of Relativistic Electron Vortices in a Magnetic Field

Koen van Kruining, Armen G. Hayrapetyan, Jorg B. Gotte

PHYSICAL REVIEW LETTERS (2017)

Article Optics

Superpositions of up to six plane waves without electric-field interference

K. C. van Kruining, R. P. Cameron, J. B. Gotte

OPTICA (2018)

Editorial Material Physics, Multidisciplinary

Comment on 'ether Drag' and Moving Images Reply

J. Leach, A. J. Wright, J. B. Gotte, J. M. Girkin, L. Allen, S. Franke-Arnold, S. M. Barnett, M. J. Padgett

PHYSICAL REVIEW LETTERS (2019)

Article Optics

Roadmap on superoscillations

Michael Berry, Nikolay Zheludev, Yakir Aharonov, Fabrizio Colombo, Irene Sabadini, Daniele C. Struppa, Jeff Tollaksen, Edward T. F. Rogers, Fei Qin, Minghui Hong, Xiangang Luo, Roei Remez, Ady Arie, Jorg B. Gotte, Mark R. Dennis, Alex M. H. Wong, George Eleftheriades, Yaniv Eliezer, Alon Bahabad, Gang Chen, Zhongquan Wen, Gaofeng Liang, Chenglong Hao, C-W Qiu, Achim Kempf, Eytan Katzav, Moshe Schwartz

JOURNAL OF OPTICS (2019)

Review Chemistry, Multidisciplinary

Optical Helicity and Chirality: Conservation and Sources

Frances Crimin, Neel Mackinnon, Joerg B. Goette, Stephen M. Barnett

APPLIED SCIENCES-BASEL (2019)

Article Optics

On the conservation of helicity in a chiral medium

Frances Crimin, Neel Mackinnon, Jorg B. Gotte, Stephen M. Barnett

JOURNAL OF OPTICS (2019)

Article Multidisciplinary Sciences

Controlling the symmetry of inorganic ionic nanofilms with optical chirality

Christopher Kelly, Donald A. MacLaren, Katie McKay, Anthony McFarlane, Affar S. Karimullah, Nikolaj Gadegaard, Laurence D. Barron, Sonja Franke-Arnold, Frances Crimin, Joerg B. Goette, Stephen M. Barnett, Malcolm Kadodwala

NATURE COMMUNICATIONS (2020)

Correction Optics

Paraxial skyrmionic beams (vol 102, 053513, 2020)

Sijia Gao, Fiona C. Speirits, Francesco Castellucci, Sonja Franke-Arnold, Stephen M. Barnett, Jorg B. Gotte

PHYSICAL REVIEW A (2021)

Article Optics

Paraxial skyrmionic beams

Sijia Gao, Fiona C. Speirits, Francesco Castellucci, Sonja Franke-Arnold, Stephen M. Barnett, Jorg B. Gotte

PHYSICAL REVIEW A (2020)

Article Astronomy & Astrophysics

Radiative spin polarization of electrons in an ultrastrong magnetic field

Koen van Kruining, Felix Mackenroth, Jorg B. Gotte

PHYSICAL REVIEW D (2019)

Proceedings Paper Optics

Orientated molecular information from chiral rotational spectroscopy

Joerg B. Goette, Robert P. Cameron, Stephen M. Barnett

COMPLEX LIGHT AND OPTICAL FORCES XI (2017)

Article Optics

Synchrotron-based pure rotational spectroscopy of H13COOH

Jianbao Zhao, Brant E. Billinghurst, Paul L. Raston

Summary: The far-infrared spectrum of room temperature formic acid labeled with 13C has been recorded and analyzed, leading to the determination of accurate line positions and predictions relevant to Earth's atmosphere and interstellar sources.

JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER (2024)

Article Optics

Accurate absolute absorption cross-sections of the ozone Wulf bands at 1 μm range: measurements with high-resolution cw-CRDS laser techniques

Semen Vasilchenko, Alexander Solodov, Oleg Egorov, Vladimir Tyuterev

Summary: Ozone plays a crucial role in atmospheric chemistry and radiative processes, and it may serve as a potential biosignature species in exoplanetary observations. This study utilized a continuous-wave cavity-ring-down spectrometer to accurately measure the absorption cross-sections of ozone in the near-infrared range. The results provide more precise data and have potential applications in atmospheric research.

JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER (2024)

Article Optics

Modeling and analysis of spectral polarization BRDF based on Microfacet theory

Baorui Huang, Bo Peng, Qifeng Ren, Sheng Liao

Summary: This study utilizes the polarization bidirectional reflectance distribution function (p-BRDF) model derived from the microfacet theory to analyze the spectral p-BRDF of a brass surface. The results show that factors such as polarization state, wavelength, surface roughness, and permittivity have a significant impact on the distribution of BRDF on the object surface.

JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER (2024)

Article Optics

Scattering of Gaussian beam by a large nonspherical particle based on vectorial complex ray model

Qingwei Duan, Jiajie Wang, Qiwei Li, Xiang'e Han, Kuan Fang Ren

Summary: This paper introduces the applications of the generalized Lorenz-Mie theory (GLMT) and the vectorial complex ray model (VCRM) in the interaction between beams and particles. By comparing the experimental results, it is found that VCRM performs well in Gaussian beam scattering problems, providing a new method for studying the scattering of shaped beams by large particles/objects of any shape.

JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER (2024)

Article Optics

Adaptive learning and expansion of spectral parameters in HITRAN database: A novel SCLB model for predicting high-temperature gas spectra

Yuefan Du, Xiaoping Li, Lei Shi, Fangyan Li, Shurong Yuan

Summary: This study proposes a physics-constrained model that utilizes the distribution characteristics of gas spectral parameters to predict spectral parameters for unknown wavelengths. Experimental results show that the model improves prediction accuracy and increases the data volume of gas spectral parameters by 4-5 times.

JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER (2024)

Article Optics

Systematic investigation of transitions to J-mixed Pr I - levels

Laurentius Windholz, Imran Siddiqui, Shamim Khan, Syed Tanweer Iqbal

Summary: In this study, we report the discovery of two energy levels of the Pr atom that exhibit strong J-mixing, as well as the observed hyperfine structure patterns. The composition of wave functions, in addition to J-values, plays a crucial role in determining the appearance of these patterns.

JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER (2024)

Article Optics

Optical frequency comb Fourier transform spectroscopy of formaldehyde in the 1250 to 1390 cm-1 range: Experimental line list and improved MARVEL analysis

Matthias Germann, Adrian Hjalten, Jonathan Tennyson, Sergei N. Yurchenko, Iouli E. Gordon, Christian Pett, Isak Silander, Karol Krzempek, Arkadiusz Hudzikowski, Aleksander Gluszek, Grzegorz Sobon, Aleksandra Foltynowicz

Summary: In this study, optical frequency comb Fourier transform spectroscopy was used to record the spectroscopic data of formaldehyde in a specific frequency range. The line positions and intensities of rovibrational transitions were obtained through line-by-line fitting. By incorporating these accurate line positions into the analysis, more energy levels and rovibrational transitions were predicted with reduced uncertainties in the H2CO spectrum.

JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER (2024)

Article Optics

An approach for a polychromatic generalized Lorenz-Mie theory

Leonardo A. Ambrosio, Jhonas O. de Sarro, Gerard Gouesbet

Summary: This study derives a polychromatic version of the generalized Lorenz-Mie theory stricto sensu (GLMT) by expanding arbitrary time-dependent fields into partial waves using Bromwich scalar potentials. The new formalism introduces field shape spectra (FSSs) which are intrinsically frequency-dependent, modifying and redefining the physical quantities expressed in the monochromatic GLMT.

JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER (2024)

Article Optics

A comparative study of efficient iterative solvers for the discrete dipole approximation

Patrick C. Chaumet

Summary: The paper proposes two new methods (IDR(s) and GPBiCGstab(L)) for computing the electromagnetic diffraction of objects larger than the wavelength. It is found that IDR(s) can reduce computation time but may not converge in some cases, while GPBiCGstab(L) always converges and also reduces computation time compared to QMR, GPBiCG, and BiCGstab.

JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER (2024)

Article Optics

An application of the boundary element method (BEM) to the calculation of the single-scattering properties of very complex ice crystals in the microwave and sub-millimetre regions of the electromagnetic spectrum

Antigoni Kleanthous, Anthony J. Baran, Timo Betcke, David P. Hewett, Christopher D. Westbrook

Summary: To improve weather and climate models, it is important to accurately calculate the single-scattering properties of randomly oriented complex atmospheric ice crystals. This study applies Boundary Element Method (BEM) to calculate these properties in the microwave and sub-millimeter region of the electromagnetic spectrum for all-sky data assimilation. The results show that BEM can accurately compute the scattering properties of complex ice aggregates, which is crucial for weather and climate models.

JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER (2024)

Article Optics

The magnetic dipole transition in Rb-like ion and its core-valence correlation effect

Ben Niu, Yanting Li, Gang Xiong, Jihui Chen, Zhimin Hu, Yunqing Fu, Yaming Zou, Chongyang Chen, Ke Yao

Summary: This study presents both experimental and theoretical analysis of the 4d 2D5/2 -> 2D3/2 magnetic dipole transition in Rb-like ions. The correlation between the theoretical and experimental findings is observed, and it is illustrated that the contribution of the core-valence correlation is pivotal for the fine structure splittings.

JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER (2024)

Article Optics

Generalized Airy theory and its region of quantitative validity

James A. Lock, Gunther P. Konnen, Philip Laven

Summary: Researchers have derived an analytical generalization of Airy theory that provides a more accurate approximation for the primary rainbow, but still has limitations for the second-order rainbow and beyond.

JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER (2024)

Article Optics

Optical attenuation by sand/dust storms considering relative humidity

Shixiong Wu, Xuebang Gao, Xuqiang Dou, Li Xie

Summary: In this paper, an indoor experimental study was conducted to investigate the optical attenuation caused by sand/dust storms at different relative humidity levels. It was found that the hygroscopic growth of sand/dust particles has a significant effect on optical attenuation when the relative humidity is above 60%. Based on the double-parameter Kasten model, a proposed optical attenuation model takes into account visibility, particle size, relative humidity, and optical wavelength. Numerical calculations considering the hygroscopicity effect were also performed, and the results were in agreement with the experimental data.

JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER (2024)

Article Optics

Thermophotonic cells in self-sustaining parallel circuits

Zhimin Yang, Jaeman Song, Bong Jae Lee

Summary: In this study, we analyze TPX cells operating in the self-sustaining circuit and examine the effects of different bandgaps on their performance. The results show that the bandgap energy of the LED must exceed that of the PV cell for the TPX cell to function in a self-sustaining parallel circuit. Additionally, a narrower bandgap energy for the PV cell and a wider bandgap energy for the LED can improve the performance of the TPX cell in the self-sustaining circuit.

JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER (2024)