4.4 Article

Dynamics of asymmetric stratified shear instabilities

Journal

PHYSICAL REVIEW FLUIDS
Volume 8, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevFluids.8.024501

Keywords

-

Ask authors/readers for more resources

The role of asymmetry on the evolution of shear instabilities is discussed. It is found that asymmetric shear instabilities exhibit features of both Holmboe and Kelvin-Helmholtz instabilities. The asymmetry reduces the parameter dependence of Kelvin-Helmholtz-driven mixing events.
Most idealized studies of stratified shear instabilities assume that the shear interface and the buoyancy interface are coincident. We discuss the role of asymmetry on the evolution of shear instabilities. Using linear stability theory and direct numerical simulations, we show that asymmetric shear instabilities exhibit features of both Holmboe and Kelvin-Helmholtz (KH) instabilities, and develop a framework to determine whether the instabilities are more Holmboe-like or more KH-like. Further, the asymmetric instabilities produce asymmetric mixing that exhibits features of both overturning and scouring flows and that tends to realign the shear and buoyancy interfaces. In all but the symmetric KH simulations, we observe a collapse in the distribution of gradient Richardson number (Rig), suggesting that asymmetry reduces the parameter dependence of KH-driven mixing events. The observed dependence of the turbulent dynamics on small-scale details of the shear and stratification has important implications for the interpretation of oceanographic data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available